#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Changes in the immune system of untreated patients with chronic lymphocytic leukaemia – part 1: adaptive immunity


Authors: P. Vodárek;  L. Smolej;  D. Belada;  M. Šimkovič;  D. Écsiová;  P. Žák
Authors‘ workplace: IV. interní hematologická klinika LF UK a FN Hradec Králové
Published in: Transfuze Hematol. dnes,27, 2021, No. 2, p. 128-136.
Category: Review/Educational Papers
doi: https://doi.org/10.48095/cctahd2021128

Overview

Chronic lymphocytic leukaemia, the most common leukaemia of adults in the western world, is associated with significant combined immunodeficiency. Even treatment-naive patients with early stages of the disease can have immunoglobulin deficiency. IgA hypogammaglobulinemia was shown to be a negative prognostic factor, leading to a higher frequency of bacterial infections. There are changes in both the number and immunophenotype of T-cells with inversion of the CD4+/ CD8+ ratio and an increase in regulatory T-cells. Changes in T-cell function are described as pseudo-exhaustion, characterised by the inability to form immunological synapses. Furthermore, the cytokine spectrum and immune cell differentiation indicate a shift towards Th2 immune response. These changes lead to increased susceptibility to opportunistic and viral infections. There are changes of innate immunity as well – NK cells, neutrophils, monocytes/ macrophages and the complement system are all affected. In this article, major adaptive immunity changes in treatment-naive patients are summarized.

Keywords:

chronic – lymphocytic – leukaemia – immunodeficiency – T-cells – cellular – B-cells – humoral – hypogammaglobulinemia –infections


Sources

1. Panovská A, Doubek M, Brychtová Y, Mayer J. Chronic lymphocytic leukemia and focusing on epidemiology and management in everyday hematologic practice: recent data from the Czech Leukemia Study Group for Life (CELL). Clin Lymphoma Myeloma Leuk. 2010;10(4):297–300.

2. Van Bockstaele F, Verhasselt B, Philippé J. Prog­-nostic markers in chronic lymphocytic leukemia: a comprehensive review. Blood Rev. 2009;23(1):25–47.

3. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–1174.

4. Dasanu CA, Alexandrescu DT. Risk for second nonlymphoid neoplasms in chronic lymphocytic leukemia. Med Gen Med. 2007;9(4):35.

5. Wadhwa PD, Morrison VA. Infectious complications of chronic lymphocytic leukemia. Semin Oncol. 2006;33(2):240–249.

6. Molica S, Levato D. What is changing in the natural history of chronic lymphocytic leukemia? Haematologica. 2001;86(1):8–12.

7. Hudson RP, Wilson SJ. Hypogammaglobulinemia and chronic lymphatic leukemia. Cancer. 1960;13:200–204.

8. Hamblin AD, Hamblin TJ. The immunodeficiency of chronic lymphocytic leukaemia. Br Med Bull. 2008;87:49–62.

9. Itälä M, Helenius H, Nikoskelainen J, Remes K. Infections and serum IgG levels in patients with chronic lymphocytic leukemia. Eur J Haematol. 1992;48(5):266–270.

10. Davey FR, Kurec AS, Tomar RH, Smith JR. Serum immunoglobulins and lymphocyte subsets in chronic lymphocytic leukemia. Am J Clin Pathol. 1987;87(1):60–65.

11. Shvidel L, Tadmor T, Braester A, et al. Serum immunoglobulin levels at dia­gnosis have no prognostic significance in stage A chronic lymphocytic leukemia: a study of 1113 cases from the Israeli CLL Study Group. Eur J Haematol. 2014;93(1):29–33.

12. Rozman C, Montserrat E, Viñolas N. Serum immunoglobulins in B-chronic lymphocytic leukemia. Natural history and prognostic significance. Cancer. 1988;61(2):279–283.

13. Parikh SA, Leis JF, Chaffee KG, et al. Hypogammaglobulinemia in newly dia­gnosed chronic lymphocytic leukemia: natural history, clinical correlates, and outcomes. Cancer. 2015;121(17):2883–2891.

14. Andersen MA, Vojdeman FJ, Andersen MK, et al. Hypogammaglobulinemia in newly dia­gnosed chronic lymphocytic leukemia is a predictor of early death. Leuk Lymphoma. 2016;57(7):1592–1599.

15. Andersen MA, Eriksen CT, Brieghel C, et al. Incidence and predictors of infection among patients prior to treatment of chronic lymphocytic leukemia: a Danish nationwide cohort study. Haematologica. 2018;103(7):e300–e303.

16. Ishdorj G, Streu E, Lambert P, et al. IgA levels at dia­gnosis predict for infections, time to treatment, and survival in chronic lymphocytic leukemia. Blood Adv. 2019;3(14):2188–2198.

17. Mauro FR, Morabito F, Vincelli ID, et al. Clinical relevance of hypogammaglobulinemia, clinical and bio­logic variables on the infection risk and outcome of patients with stage A chronic lymphocytic leukemia. Leuk Res. 2017;57:65–71.

18. Freeman JA, Crassini KR, Best OG, et al. Immunoglobulin G subclass deficiency and infection risk in 150 patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2013;54(1):99–104.

19. Visentin A, Compagno N, Cinetto F, et al. Clinical profile associated with infections in patients with chronic lymphocytic leukemia. Protective role of immunoglobulin replacement therapy. Haematologica. 2015;100(12):e515–e518.

20. Francis S, Karanth M, Pratt G, et al. The effect of immunoglobulin VH gene mutation status and other prognostic factors on the incidence of major infections in patients with chronic lymphocytic leukemia. Cancer. 2006;107(5):1023–1033.

21. Nosari A. Infectious complications in chronic lymphocytic leukemia. Mediterr J Hematol Infect Dis. 2012;4(1):e2012070.

22. Pasiarski M, Rolinski J, Grywalska E, et al. Antibody and plasmablast response to 13-valent pneumococcal conjugate vaccine in chronic lymphocytic leukemia patients – preliminary report. PLoS One. 2014;9(12):e114966.

23. Svensson T, Kättström M, Hammarlund Y, et al. Pneumococcal conjugate vaccine trig­gers a better immune response than pneumococcal polysaccharide vaccine in patients with chronic lymphocytic leukemia A randomized study by the swedish CLL group. Vaccine. 2018;36(25):3701–3707.

24. Schuh AH, Parry-Jones N, Appleby N, et al. Guideline for the treatment of chronic lymphocytic leukaemia. A british society for haematology guideline. Br J Haematol. 2018;182(3):344–359.

25. Stilgenbauer S, Furman RR, Zent CS. Management of chronic lymphocytic leukemia. American society of clinical oncology educational book 2015;35:164–175.

26. Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO clinical practice guidelines for dia­gnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v78–84.

27. Wierda WG, Byrd JC, Abramson JS, et al. NCCN guidelines version 1.2021 Chronic lymphocytic leukemia /  small lymphocytic lymphoma. www.nccn.org. [online]. 2020 [cit. 2020-10-11]. Dostupné z: https:/ / www.nccn.org/ professionals/ physician_gls/ pdf/ cll_blocks.pdf.

28. Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for dia­gnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–2760.

29. Yri OE, Torfoss D, Hungnes O, et al. Rituximab blocks protective serologic response to influenza A (H1N1) 2009 vaccination in lymphoma patients during or within 6 months after treatment. Blood. 2011;118(26):6769–6771.

30. Raanani P, Gafter-Gvili A, Paul M, Ben-Bassat I, Leibovici L, Shpilberg O. Immunoglobulin prophylaxis in chronic lymphocytic leukemia and multiple myeloma: systematic review and meta-analysis. Leuk Lymphoma. 2009;50(5):764–772.

31. Reiser M, Borte M, Huscher D, et al. Management of patients with malignancies and secondary immunodeficiencies treated with immunoglobulins in clinical practice: long‐-term data of the SIGNS study. Eur J Haematol. 2017;99(2):169–177.

32. Corbigni A, Innocenti I, Tomasso A, et al. Monoclonal gammopathy and serum immunoglobulin levels as prognostic factors in chronic lymphocytic leukemia. Br J Haematol. 2020;190(6):901–908.

33. Sarris K, Maltezas D, Koulieris E, et al. Prog­nostic significance of serum free light chains in chronic lymphocytic leukemia. Adv Hematol. 2013;2013:359071.

34. Tsai HT, Caporaso NE, Kyle RA, et al. Evidence of serum immunoglobulin abnormalities up to 9.8 years before dia­gnosis of chronic lymphocytic leukemia: a prospective study. Blood. 2009;114(24):4928–4932.

35. Maurer MJ, Cerhan JR, Katzmann JA, et al. Monoclonal and polyclonal serum free light chains and clinical outcome in chronic lymphocytic leukemia. Blood. 2011;118(10):2821–2826.

36. Xu W, Wang YH, Fan L, et al. Prognostic significance of serum immunoglobulin paraprotein in patients with chronic lymphocytic leukemia. Leuk Res. 2011;35(8):1060–1065.

37. Rizzo D, Chauzeix J, Trimoreau F, et al. IgM peak independently predicts treatment-free survival in chronic lymphocytic leukemia and correlates with accumulation of adverse oncogenetic events. Leukemia. 2015;29(2)337–345.

38. Kay NE, Perri RT. Evidence that large granular lymphocytes from B-CLL patients with hypogammaglobulinemia down-regulate B-cell immunoglobulin synthesis. Blood. 1989;73(4): 1016–1019.

39. Sampalo A, Navas G, Medina F, Segundo C, Cámara C, Brieva JA. Chronic lymphocytic leukemia B cells inhibit spontaneous Ig production by autologous bone marrow cells: role of CD95-CD95L interaction. Blood. 2000;96(9): 3168–3174.

40. Dearden C. Disease-specific complications of chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2008:450–456.

41. Palmer S, Hanson CA, Zent CS, et al. Prognostic importance of T and NK-cells in a consecutive series of newly dia­gnosed patients with chronic lymphocytic leukaemia. Br J Haematol. 2008;141(5):607–614.

42. Mackus WJM, Frakking FNJ, Grummels A, et al. Expansion of CMV-specific CD8+CD45RA+CD27- T cells in B-cell chronic lymphocytic leukemia. Blood. 2003;102(3):1057–1063.

43. Riches JC, Davies JK, McClanahan F, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121(9):1612–1621.

44. Nunes C, Wong R, Mason M, Fegan C, Man S, Pepper C. Expansion of a CD8(+)PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res. 2012;18(3):678–687.

45. Wu J, Xu X, Lee EJ, et al. Phenotypic alteration of CD8+ T cells in chronic lymphocytic leukemia is associated with epigenetic reprogramming. Oncotarget. 2016;7(26):40558–40570.

46. Brusa D, Serra S, Coscia M, et al. The PD-1/ PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–963.

47. Gonzalez-Rodriguez AP, Contesti J, Huergo-Zapico L, et al. Prognostic significance of  CD8 and CD4 T cells in chronic lymphocytic leukemia. Leuk Lymphoma. 2010;51(10):1829–1836.

48. Gonnord P, Costa M, Abreu A, et al. Multiparametric analysis of CD8+ T cell compartment phenotype in chronic lymphocytic leukemia reveals a signature associated with progression toward therapy. Oncoimmunology. 2019;8(4):e1570774.

49. Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce  impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412–1421.

50. Blanco G, Puiggros A, Sherry B, et al. Chronic lymphocytic leukemia-like monoclonal B-cell lymphocytosis exhibits an increased inflammatory signature that is reduced in early-stage chronic lymphocytic leukemia. Exp Hematol. 2021;7:S0301-472X(21)00001-1.

51. Palma M, Gentilcore G, Heimersson K, et al. T cells in chronic lymphocytic leukemia display dysregulated expression of immune check­points and activation markers. Haematologica. 2017;102(3):562–572.

52. Grywalska E, Pasiarski M, Sosnowska-Pasiarska B, et al. Programmed cell death 1 expression and Epstein-Barr virus infection in chronic lymphocytic leukaemia: a prospective cohort study. Cancer Manag Res. 2019;11:7605–7618.

53. Hofland T, de Weerdt I, Endstra S, et al. Functional differences between EBV- and CMV-specific CD8+ T cells demonstrate heterogeneity of T cell dysfunction in CLL. Hemasphere. 2020;4(2):e337.

54. Ding W, LaPlant BR, Call TG, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–3427.

55. Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood. 2018;131(1):68–83.

56. Motta M, Rassenti L, Shelvin BJ, et al. Increased expression of CD152 (CTLA-4) by normal T lymphocytes in untreated patients with B-cell chronic lymphocytic leukemia. Leukemia. 2005;19(10):1788–1793.

57. Kosmaczewski A, Ciszak L, Potoczek S, Frydecka I. The significance of Treg cells in defective tumor immunity. Arch Immunol Ther Exp. 2008;56(3):181–191.

58. Ciszak L, Frydecka I, Wolowiec D, Szteblich A, Kosmaczewska A. Patients with chronic lymphocytic leukaemia (CLL) differ in the pattern of CTLA-4 expression on CLL cells: the possible implications for immunotherapy with CTLA-4 blocking antibody. Tumour Biol. 2016;37(3):4143–4157.

59. Scrivener S, Kaminski ER, Demaine A, Prentice AG. Analysis of the expression of critical activation/ interaction markers on peripheral blood T cells in B-cell chronic lymphocytic leukaemia: evidence of immune dysregulation. Br J Haematol. 2001;112(4): 959–964.

60. Cantwell M, Hua T, Pappas J, Kipps TJ. Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nat Med. 1997;3:984–989.

61. Zaborsky N, Gassner FJ, Asslaber D, et al. CD1d expression on chronic lymphocytic leukemia B cells affects disease progression and induces T cell skewing in CD8 positive and CD4CD8 double negative T cells. Oncotarget. 2016;7(31):49459–49469.

62. Scrivener S, Goddard RV, Kaminski ER, Prentice AG. Abnormal T-cell function in B-cell chronic lymphocytic leukaemia. Leuk Lymphoma. 2003;44(3):383–389.

63. Jadidi-Niaragh F, Ghalamfarsa G, Yousefi M, Tabrizi MH, Shokri F. Regulatory T cells in chronic lymphocytic leukemia: implication for immunotherapeutic interventions. Tumour Biol. 2013;34(4):2031–2039.

64. Piper KP, Karanth M, McLarnon A, et al. Chronic lymphocytic leukaemia cells drive the global CD4+ T cell repertoire towards a regulatory phenotype and leads to the accumulation of CD4+ forkhead box P3+ T cells. Clin Exp Immunol. 2011;166(2):154–163.

65. Lad DP, Varma S, Varma N, Sachdeva MU, Bose P, Malhotra P. Regulatory T-cells in B-cell chronic lymphocytic leukemia: their role in disease progression and autoimmune cytopenias. Leuk Lymphoma. 2013;54(5):1012–1019.

66. Jadidi-Niaragh F, Yousefi M, Memarian A, et al. Increased frequency of CD8(+) and CD4(+) regulatory T cells in chronic lymphocytic leukemia: association with disease progression. Cancer Invest. 2013;31(2):121–131.

67. Jadidi-Niaragh F, Ghalamfarsa G, Memarian A, et al. Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chronic lymphocytic leukemia. Tumour Biol. 2013;34(2):929–940.

68. Mpakou VE, Ioannidou HD, Konsta E, et al., Quantitative and qualitative analysis of regulatory T cells in B cell chronic lymphocytic leukemia. Leuk Res. 2017;60:74–81.

69. D’Arena G, D’Auria F, Simeon V, et al. A shorter time to the first treatment may be predicted by the absolute number of regulatory Tcells in patients with Rai stage 0 chronic lymphocytic leukemia. Am J Hematol. 2012;87(6):628–631.

70. Karmali R, Paganessi LA, Frank RR et al. Aggres­sive disease defined by cytogenetics is associated with cytokine dysregulation in CLL/ SLL patients. J Leukoc Biol. 2013;93(1): 161–170.

71. Rossmann ED, Lewin N, Jeddi-Tehrani M, Osterborg A, Mellstedt H. Intracellular T cell cytokines in patients with B cell chronic lymphocytic leukaemia (B-CLL). Eur J Haematol. 2002;68(5):299–306.

72. Kiaii S, Choudhury A, Mozaffari F, Kimby E, Osterborg A, Mellstedt H. Signaling molecules and cytokine production in T cells of patients with B-cell chronic lymphocytic leukemia (B-CLL): comparison of indolent and progressive disease. Med Oncol. 2005;22(3):291–302.

73. Guo B, Zhang L, Chiorazzi N, Rothstein TL. IL-4 rescues surface IgM expression in chronic lymphocytic leukemia. Blood. 2016;128(4):553–562.

74. Aguilar-Hernandez MM, Blunt MD, Dobson R, et al. IL-4 enhances expression and function of surface IgM in CLL cells. Blood. 2016;127(24):3015–3025.

75. Hus I, Bojarska-Junak A, Chocholska S, et al. Th17/ IL-17A might play a protective role in chronic lymphocytic leukemia immunity. PLoS One. 2013;8(11):e78091.

76. Vardi A, Vlachonikola E, Karypidou M, et al. A. Restrictions in the T-cell repertoire of chronic lymphocytic leukemia: high-throughput immunoprofiling supports selection by shared antigenic elements. Leukemia. 2017;31(7):1555–1561.

77. Blanco G, Vardi A, Puiggros A, et al. Restricted T cell receptor repertoire in CLL-like monoclonal B cell lymphocytosis and early stage CLL. Oncoimmunology. 2018;7(6):e1432328.

78. Mohr A, Renaudineau Y, Bagacean C, Pers JO, Jamin C, Bordron A. Regulatory B lymphocyte functions should be considered in chronic lymphocytic leukemia. Oncoimmunology. 2016;5(5):e1132977.

79. Morrison VA. Infectious complications of chronic lymphocytic leukaemia: pathogenesis, spectrum of infection, preventive approaches. Best Pract Res Clin Haematol. 2010;23(1):145–153.

80. Nückel H, Rebmann V, Dürig J, Dührsen U, Grosse-Wilde H. HLA-G expression is associated with an unfavorable outcome and immunodeficiency in chronic lymphocytic leukemia. Blood. 2005;105(4):1694–1698.

81. Rizzo R, Audrito V, Vacca P, et al. HLA-G is a component of the chronic lymphocytic leukemia escape repertoire to generate immune suppression: impact of the HLA-G 14 bp (rs66554220) polymorphism. Haematologica. 2014;99(5):888–896.

Labels
Haematology Internal medicine Clinical oncology

Article was published in

Transfusion and Haematology Today

Issue 2

2021 Issue 2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#