#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Studium mechanických vlastností s využitím mikroskopie atomárních sil


Authors: J. Malohlava;  K. Tománková;  P. Kolář;  H. Kolářová
Authors‘ workplace: Ústav lékařské biofyziky, Lékařská fakulta, Univerzita Palackého v Olomouci, Česká republika
Published in: Lékař a technika - Clinician and Technology No. 3, 2013, 43, 5-9
Category: Review

Overview

Mikroskopie atomárních sil (AFM) se řadí mezi moderní zobrazovací techniky, které poskytují obraz v subnanometrickém rozlišení. Na rozdíl od ostatních technik ji lze použít i v kapalinách, které imitují přirozené prostředí, což je obzvlášť výhodné při studiu biologických vzorků. Od roku 1986 se vyvinula v univerzální nástroj, který kromě výškového zobrazení poskytuje mapy elastických a viskoelastických vlastností. Naše práce má za úkol představit nové techniky zabývající se studiem mechanických vlastností buněk – Peak Force Tapping a Stiffness tomography. Oba přístupy reprezentují jedinečný způsob práce se silovými křivkami, které jsou základem pro určení mechanických vlastností.

Klíčová slova:
mikroskopie atomárních sil, mechanické vlastnosti, Peak Force Tapping, Stiffness tomography


Sources

[1] Caille, N., Thoumine, O., Tardy, Y., Meister, J. J. Contribution of the nucleus to the mechanical properties of endothelial cells. Journal of Biomechanics 2002, 35, 177-187.

[2] Petroll, W. M., Cavanagh, H. D., Jester, J. V. Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts. Scanning 2004, 26, 1-10.

[3] Chen, Q. A., Xiao, P., Chen, J. N., Cai, J. Y., Cai, X. F., Ding, H., Pan, YL. AFM Studies of Cellular Mechanics during Osteogenic Differentiation of Human Amniotic Fluid-derived Stem Cells. Analytical Science 2010, 26, 1033-1037.

[4] Lulevich, V., Zink, T., Chen, H. Y., Liu, F. T., Liu, G. Y. Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir 2006, 22, 8151-8155.

[5] Milovanovic, P., Potocnik, J., Djonic, D., Nikolic, S., Zivkovic, V., Djuric, M., Rakocevic, Z. Age-related deterioration in trabecular bone mechanical properties at material level: Nanoindentation study of the femoral neck in women by using AFM. Experimental Gerontology 2012, 47, 154-159.

[6] Binnig, G., Quate, C. F., Gerber, C. Atomic force microscope. Physical Review Letters 1986, 56, 930-933.

[7] Rico, F., Roca-Cusachs, P., Gavara, N., Farré, R., Rotger, M., Navajas, D. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Physical Review E 2005, 72, 021914.

[8] Rotsch, C., Radmacher, M. Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study. Biophysical Journal 2000, 78, 520-535.

[9] Li, M., Liu, L. Q., Xi, N., Wang, Y. C., Dong, Z. L., Xiao, X. B., Zhang, WJ. Drug-Induced Changes of Topogrpahy and Elasticity in Living B Lymphoma Cells Based on Atomic Force Microscopy. Acta Physico-Chimica Sinica 2012, 28, 1502-1508.

[10] Puech, P. H., Poole, K., Knebel, D., Muller, D. J. A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy 2006, 106, 637-644.

[11] Starodubtseva, M. N. Mechanical properties of cells and ageing. Ageing Research Reviews 2011, 10, 16-25.

[12] Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomaterialia 2007, 3, 413-438.

[13] Franz, C. M., Puech, P. H. Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics. Cellular and Molecular Bioengineering 2008, 1, 289-300.

[14] Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A., Zhdanov, RI. Atomic force microscopy probing of cell elasticity. Micron 2007, 38, 824-833.

[15] Kasas, S., Dietler, G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Archiv – European Journal of Physiology 2008, 456, 13-27.

[16] Withers, J. R., Aston, D. E. Nanomechanical measurements with AFM in the elastic limit. Advances in Colloid and Interface Science 2006, 120, 57-67.

[17] Hertz, H. Uber die Beruhrung fester elsastischer Korper. Journal für die Reine und Angewandte Mathematik 1881, 92, 156-171.

[18] Kurland, N. E., Drira, Z., Yadavalli, V. K. Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron 2012, 43, 116-128.

[19] Sneddon, I. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science 1965, 3, 47-57.

[20] Johnson, K. L., Kendall, K., Roberts, A. D. Surface energy and contact of elastic solids. Proceedings of the Royal Society of London Series A – Mathematical and Physical Science 1971, 324, 301.

[21] Derjaguin, B. V., Müller, V. M., Toporov, Y. P. Effect of contact deformations on adhesion of particles. Journal of Colloid and Interface Science 1975, 53, 314-326.

[22] Oliver, W. C., Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 1992, 7, 1563-1583.

[23] Sweers, K., van der Werf, K., Bennink, M., Subramaniam, V. Nanomechanical properties of alpha-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM. Nanoscale Research Letters 2011, 6, 270.

[24] Pittenger, B., Erina, N., Su, C. Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM. Bruker Application Note #128 2010.

[25] Heu, C., Berquand, A., Elie-Caille, C., Nicod, L. Glyphosate-induced stiffening of HaCaT kerationcytes, a Peak Force Tapping study on living cells. Journal of Structural Biology 2012, 178, 1-7.

[26] Adamcik, J., Berquand, A., Mezzenga, R. Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy. Applied Physics Letters 2011, 98, 193701.

[27] Pletikapic, G., Berquand, A., Radic, T. M., Svetlicic, V. Quantitative nanomechanical mapping of marine diatom in seawater using Peak Force Tapping Atomic Force Microscopy. Journal of Phycology 2012, 48, 174-185.

[28] Berquand, A., Roduit, C., Kasas, S., Holloschi, A., Ponce, L., Hafner, M. Atomic Force Microscopy Imaging of Living Cells. Microscopy Today 2010, 18, 8-14.

[29] Wang, Y., Subbiahdoss, G., Swartjes, J., van der Mei, H. C., Busscher, H. J., Libera, M. Length-Scale Mediated Differential Adhesion of Mammalian Cells and Microbes. Advanced Functional Materials 2011, 21, 3916-3923.

[30] Roduit, C., Sekatski, S., Dietler, G., Catsicas, S., Lafont, F., Kasas, S. Stiffness Tomography by Atomic Force Microscopy. Biophysical Journal 2009, 97, 674-677.

[31] Roduit, C., Longo, G., Benmessaoud, I., Volterra, A., Saha, B., Dietler, G., Kasas, S. Stiffness tomography exploration of living and fixed macrophages. Journal of Molecular Recognition 2012, 25, 241-246.

[32] Longo, G., Rio, L. M., Roduit, C., Trampuz, A., Bizzini, A., Dietler, G., Kasas S. Force volume and stiffness tomography investigation on the dynamics of stiff material under bacterial membranes. Journal of Molecular Recognition 2012, 25, 278-284.

Labels
Biomedicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#