#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Therapeutic potential of transcutaneous spinal cord  stimulation in individuals with spinal cord injury


Authors: J. Kříž 1;  V. Rybka 2;  K. Šedivá 1;  J. Balková 1;  J. Demeková 2
Authors‘ workplace: Spinální jednotka při Klinice rehabilitace a tělovýchovného lékařství 2. LF UK a FN Motol a Homolka, Praha 1;  Klinika rehabilitace a tělovýchovného lékařství 2. LF UK a FN Motol a Homolka, Praha 2
Published in: Rehabil. fyz. Lék., 105, 2025, No. 3, pp. 113-124.
Category: Review Article
doi: https://doi.org/10.48095/ccrhfl2025113

Overview

Introduction: Transcutaneous spinal cord stimulation (tSCS) is a non-invasive neuromodulation technique that provides a novel approach to the rehabilitation of individuals with spinal cord injury (SCI). Its goal is to increase the excitability of spinal circuits and facilitate residual neuronal connections that remain preserved, but are dysfunctional after SCI. Methods: This review summarizes the current knowledge on the use of tSCS in motor, autonomic, and respiratory functions, as well as its effects on spasticity and postural stability. It draws from available scientific literature, including randomized controlled trials, case reports, and pilot studies focused on the impact of tSCS in individuals with different levels and severities of SCI. The studies were evaluated based on their mechanisms of action, technical stimulation parameters, and the clinical outcomes achieved. Results: Studies have demonstrated that tSCS increases the excitability of spinal neuronal networks, promoting the activation of previously dysfunctional motor pathways. Notable improvements include enhanced voluntary movement in the upper and lower limbs, increased muscle strength, improved trunk control while sitting, and positive effects on respiratory parameters such as respiratory muscle strength. Additionally, enhancements in autonomic functions –⁠ particularly micturition, defecation, and blood pressure regulation –⁠ along with reduced spasticity, have been observed. These effects were also evident in the chronic phase of injury, and in some cases, persisted after stopping stimulation, indicating the potential for long-term neuroplasticity. Conclusion: tSCS is a promising, safe, and easily accessible method that could expand treatment options in neurorehabilitation for individuals with SCI. Future research should focus on optimizing stimulation protocols and combining them with other rehabilitation methods.

Keywords:

neurorehabilitation – spasticity – spinal cord injury – transcutaneous spinal cord stimulation – sensorimotor function – autonomic function


Sources

1. Minassian K, Persy I, Rattay F et al. Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 2007; 35(3): 327–336. doi: 10.1002/mus.20700.

2. Sherwood AM, Dimitrijevic MR, McKay WB. Evidence of subclinical brain influence in clinically complete spinal cord injury: discomplete SCI. J Neurol Sci 1992; 110(1–2): 90–98. doi: 10.1016/0022-510x(92)90014-c.

3. Taccola G, Sayenko D, Gad P et al. And yet it moves: recovery of volitional control after spinal cord injury. Prog Neurobiol 2018; 160 : 64–81. doi: 10.1016/j.pneurobio.2017.10.004.

4. Hofstoetter US, Freundl B, Binder H et al. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: elicitation of posterior root-muscle reflexes. PLoS One 2018; 13(1): e0192013. doi: 10.1371/journal.pone.0192013.

5. Minassian K, Hofstoetter US, Dzeladini F et al. The human central pattern generator for locomotion: does it exist and contribute to walking? Neuroscientist 2017; 23(6): 649–663. doi: 10.1177/1073858417699790.

6. Laliberte AM, Goltash S, Lalonde NR et al. Propriospinal neurons: essential elements of locomotor control in the intact and possibly the injured spinal cord. Front Cell Neurosci 2019; 13 : 512. doi: 10.3389/fncel.2019.00512.

7. Inanici F, Brighton LN, Samejima S et al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng 2021; 29 : 310–319. doi: 10.1109/TNSRE.2021.3049133.

8. Gerasimenko Y, Daniel O, Regnaux JP et al. Mechanisms of locomotor activity generation under epidural spinal cord stimulation. In: Dengler R, Kossev A (eds.). Sensorimotor Control. NATO Science Series, I: Life and Behavioural Sciences 2001; 326 : 164–171.

9. Hogan MK, Hamilton GF, Horner PJ. Neural stimulation and molecular mechanisms of plasticity and regeneration: a review. Front Cell Neurosci 2020; 14 : 271. doi: 10.3389/fncel.2020.00271.

10. Hofstoetter US, Hofer C, Kern H et al. Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed Tech (Berl) 2013; 58(Suppl 1): /j/bmte.2013.58.issue-s1-A/bmt-2013-4014/bmt-2013-4014.xml. doi: 10.1515/bmt-2013-4014.

11. Hofstoetter US, Krenn M, Danner SM et al. Augmentation of voluntary locomotor activity by transcutaneous spinal cord stimulation in motor-incomplete spinal cord-injured individuals. Artif Organs 2015; 39(10): E176–186. doi: 10.1111/aor.12615.

12. Gerasimenko YP, Lu DC, Modaber M et al. Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma 2015; 32(24): 1968–1980. doi: 10.1089/neu.2015.4008.

13. McHugh LV, Miller AA, Leech KA et al. Feasibility and utility of transcutaneous spinal cord stimulation combined with walking-based therapy for people with motor incomplete spinal cord injury. Spinal Cord Ser Cases 2020; 6(1): 104. doi: 10.1038/s41394-020-00359-1.

14. Samejima S, Caskey CD, Inanici F et al. Multisite transcutaneous spinal stimulation for walking and autonomic recovery in motor-incomplete tetraplegia: a single-subject design. Phys Ther 2022; 102(1): pzab228. doi: 10.1093/ptj/pzab228.

15. Tharu NS, Wong AYL, Zheng YP. Transcutaneous electrical spinal cord stimulation increased target-specific muscle strength and locomotion in chronic spinal cord injury. Brain Sci 2024; 14(7): 640. doi: 10.3390/brainsci14070640.

16. Al‘joboori Y, Massey SJ, Knight SL et al. The effects of adding transcutaneous spinal cord stimulation (tSCS) to sit-to-stand training in people with spinal cord injury: a pilot study. J Clin Med 2020; 9(9): 2765. doi: 10.3390/jcm9092765.

17. Kumru H, Ros-Alsina A, García Alén L et al. Improvement in motor and walking capacity during multisegmental transcutaneous spinal stimulation in individuals with incomplete spinal cord injury. Int J Mol Sci 2024; 25(8): 4480. doi: 10.3390/ijms25084480.

18. Shapkova EY, Pismennaya EV, Emelyannikov DV et al. Exoskeleton walk training in paralyzed individuals benefits from transcutaneous lumbar cord tonic electrical stimulation. Front Neurosci 2020; 14 : 416. doi: 10.3389/fnins.2020.00416.

19. Estes S, Zarkou A, Hope JM et al. Combined transcutaneous spinal stimulation and locomotor training to improve walking function and reduce spasticity in subacute spinal cord injury: a randomized study of clinical feasibility and efficacy. J Clin Med 2021; 10(6): 1167. doi: 10.3390/jcm10061167.

20. Comino-Suárez N, Moreno JC, Megía-García Á et al. Transcutaneous spinal cord stimulation combined with robotic-assisted body weight-supported treadmill training enhances motor score and gait recovery in incomplete spinal cord injury: a double-blind randomized controlled clinical trial. J Neuroeng Rehabil 2025; 22(1): 15. doi: 10.1186/s12984-025-01545-8.

21. Inanici F, Samejima S, Gad P et al. Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans Neural Syst Rehabil Eng 2018; 26(6): 1272–1278. doi: 10.1109/TNSRE.2018.2834339.

22. Freyvert Y, Yong NA, Morikawa E et al. Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients. Sci Rep 2018; 8(1): 15546. doi: 10.1038/s41598-018-33123-5.

23. Gad P, Lee S, Terrafranca N et al. Non-invasive activation of cervical spinal networks after severe paralysis. J Neurotrauma 2018; 35(18): 2145–2158. doi: 10.1089/neu.2017.5461.

24. Tefertiller C, Rozwod M, VandeGriend E et al. Transcutaneous electrical spinal cord stimulation to promote recovery in chronic spinal cord injury. Front Rehabil Sci 2021; 2 : 740307. doi: 10.3389/fresc.2021.740307.

25. Moritz C, Field-Fote EC, Tefertiller C et al. Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: a safety and efficacy trial. Nat Med 2024; 30(5): 1276–1283. doi: 10.1038/s41591-024-02940-9.

26. Rath M, Vette AH, Ramasubramaniam S et al. Trunk stability enabled by noninvasive spinal electrical stimulation after spinal cord injury. J Neurotrauma 2018; 35(21): 2540–2553. doi: 10.1089/neu.2017.5584.

27. Gad P, Kreydin E, Zhong H et al. Enabling respiratory control after severe chronic tetraplegia: an exploratory case study. J Neurophysiol 2020; 124(3): 774–780. doi: 10.1152/jn.00320.2020.

28. Kumru H, García-Alén L, Ros-Alsina A et al. Transcutaneous spinal cord stimulation improves respiratory muscle strength and function in subjects with cervical spinal cord injury: original research. Biomedicines 2023; 11(8): 2121. doi: 10.3390/biomedicines11082121.

29. Hofstoetter US, McKay WB, Tansey KE et al. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med 2014; 37(2): 202–211. doi: 10.1179/2045772313Y.0000000149.

30. Phillips AA, Squair JW, Sayenko DG et al. An autonomic neuroprosthesis: noninvasive electrical spinal cord stimulation restores autonomic cardiovascular function in individuals with spinal cord injury. J Neurotrauma 2018; 35(3): 446–451. doi: 10.1089/neu.2017.5082.

31. Engel-Haber E, Bheemreddy A, Bayram MB et al. Neuromodulation in spinal cord injury using transcutaneous spinal stimulation-mapping for a blood pressure response: a case series. Neurotrauma Rep 2024; 5(1): 845–856. doi: 10.1089/neur.2024.0066.

32. Sachdeva R, Nightingale TE, Pawar K et al. Noninvasive neuroprosthesis promotes cardiovascular recovery after spinal cord injury. Neurotherapeutics 2021; 18(2): 1244–1256. doi: 10.1007/s13311-021-01034-5.

33. Solinsky R, Burns K, Tuthill C et al. Transcutaneous spinal cord stimulation and its impact on cardiovascular autonomic regulation after spinal cord injury. Am J Physiol Heart Circ Physiol 2024; 326(1): H116–H122. doi: 10.1152/ajpheart.00588.2023.

34. Gad PN, Kreydin E, Zhong H et al. Non-invasive neuromodulation of spinal cord restores lower urinary tract function after paralysis. Front Neurosci 2018; 12 : 432. doi: 10.3389/fnins.2018.00432.

35. Kreydin E, Zhong H, Latack K et al. Transcutaneous electrical spinal cord neuromodulator (TESCoN) improves symptoms of overactive bladder. Front Syst Neurosci 2020; 14 : 1. doi: 10.3389/fnsys.2020.00001.

36. Kreydin E, Zhong H, Lavrov I et al. The effect of non-invasive spinal cord stimulation on anorectal function in individuals with spinal cord injury: a case series. Front Neurosci 2022; 16 : 816106. doi: 10.3389/fnins.2022.816106.

37. Singh G, Lucas K, Keller A et al. Transcutaneous spinal stimulation from adults to children: a review. Top Spinal Cord Inj Rehabil 2023; 29(1): 16–32. doi: 10.46292/sci21-00084.

38. Tran K, Steele A, Crossnoe R et al. Multi-site lumbar transcutaneous spinal cord stimulation: When less is more. Neurosci Lett 2024; 820 : 137579. doi: 10.1016/j.neulet.2023.137579.

39. Megía García A, Serrano-Muñoz D, Taylor J et al. Transcutaneous spinal cord stimulation and motor rehabilitation in spinal cord injury: a systematic review. Neurorehabil Neural Repair 2020; 34(1): 3–12. doi: 10.1177/1545968319893298.

40. Meyer C, Hofstoetter US, Hubli M et al. Immediate effects of transcutaneous spinal cord stimulation on motor function in chronic, sensorimotor incomplete spinal cord injury. J Clin Med 2020; 9(11): 3541. doi: 10.3390/jcm9113541.

41. Ladenbauer J, Minassian K, Hofstoetter US et al. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 2010; 18(6): 637–645. doi: 10.1109/TNSRE.2010.2054112.

42. Gerasimenko Y, Gorodnichev R, Puhov A et al. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J Neurophysiol 2015; 113(3): 834–842. doi: 10.1152/jn.00609.2014.

43. Kumru H, Flores Á, Rodríguez-Cañón M et al. Cervical electrical neuromodulation effectively enhances hand motor output in healthy subjects by engaging a use-dependent intervention. J Clin Med 2021; 10(2): 195. doi: 10.3390/jcm10020195.

44. Kriz J, Nasincova Z, Gallusova V et al. Muscle excitability scale for the assessment of spastic reflexes in spinal cord injury: development and evaluation. Spinal Cord 2024; 62(9): 532–538. doi: 10.1038/s41393-024-01016-2.

45. Adams MM, Hicks AL. Spasticity after spinal cord injury. Spinal Cord 2005; 43(10): 577–586. doi: 10.1038/sj.sc.3101757.

46. Hofstoetter US, Freundl B, Danner SM et al. Transcutaneous spinal cord stimulation induces temporary attenuation of spasticity in individuals with spinal cord injury. J Neurotrauma 2020; 37(3): 481–493. doi: 10.1089/neu.2019.6588.

47. Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 2004; 21(10): 1371–1383. doi: 10.1089/neu.2004.21.1371.

48. Rybka V, Kříž J. Možnosti využití epidurální stimulace u jedinců s motoricky kompletní míšní lézí. Cesk Slov Neurol N 2025; 88(1): 9–14. doi: 10.48095/cccsnn20259.

49. Samejima S, Shackleton C, Miller T et al. Mapping the iceberg of autonomic recovery: mechanistic underpinnings of neuromodulation following spinal cord injury. Neuroscientist 2024; 30(3): 378–389. doi: 10.1177/10738584221145570.

50. Kříž J. Poranění míchy: Příčiny, důsledky, organizace péče. Praha: Galén 2019.

51. Levin PJ, Wu JM, Kawasaki A et al. The efficacy of posterior tibial nerve stimulation for the treatment of overactive bladder in women: a systematic review. Int Urogynecol J 2012; 23(11): 1591–1597. doi: 10.1007/s00192-012-1712-4.

52. Sayenko DG, Rath M, Ferguson AR et al. Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury. J Neurotrauma 2019; 36(9): 1435–1450. doi: 10.1089/neu.2018.5956.

53. Tajali S, Balbinot G, Pakosh M et al. Modulations in neural pathways excitability post transcutaneous spinal cord stimulation among individuals with spinal cord injury: a systematic review. Front Neurosci 2024; 18 : 1372222. doi: 10.3389/fnins.2024.1372222.

Labels
Physiotherapist, university degree Rehabilitation Sports medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#