#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The significance of glycocalyx in surgery


Authors: L. Hána 1,3;  J. Kočí 2,3;  R. Pohnán 1;  D. Řehák 5;  D. Astapenko 4,5,6
Authors‘ workplace: Chirurgická klinika 2. lékařské fakulty Univerzity Karlovy a Ústřední vojenské nemocnice – Vojenské fakultní nemocnice Praha, Česká republika 1;  Klinika urgentní medicíny, Fakultní nemocnice Hradec Králové, Česká republika 2;  Katedra vojenské chirurgie, Vojenská lékařská fakulta Hradec Králové, Univerzita obrany v Brně, Česká republika 3;  Klinika anesteziologie, resuscitace a intenzivní medicíny, Fakultní nemocnice Hradec Králové, Česká republika 4;  Lékařská fakulta v Hradci Králové, Univerzita Karlova, Česká republika 5;  Fakulta zdravotnických studií, Technická univerzita v Liberci, Česká republika 6
Published in: Rozhl. Chir., 2023, roč. 102, č. 12, s. 453-458.
Category: Review
doi: https://doi.org/10.33699/PIS.2023.102.12.453–458

Overview

Introduction: Surgical treatment is associated with an unwanted response of the organism to the so-called surgical trauma. This response is called surgical stress. Ischaemia-reperfusion injury is one of essential causes of tissue damage. It comprises functional and structural changes in tissue that occur after the restoration of circulation, after an episode of ischaemia. Necrosis of irreversibly changed cells and endothelial and mitochondrial-induced tissue swelling occur.

Methods: Physiology, pathophysiology of endothelial glycocalyx: Endothelial glycocalyx is a 0.2 to 5 micrometres thin heteropolysaccharide layer that covers the endothelium on its intraluminal side. Backbone molecules of the glycocalyx include proteoglycans, glycoproteins, and glycosaminoglycans. Damage of the endothelial glycocalyx was described in trauma patients, in patients with septic shock, in ischemia and reperfusion injury, and during extensive surgical procedures. Approaches to prevent endothelial glycocalyx damage: Remote ischemic preconditioning was tested as a method of ischemia and reperfusion injury prevention during and after surgery. Nevertheless, the expected effect was not confirmed in performed meta-analyses. Endothelial glycocalyx damage can be prevented pharmacologically with a broad spectrum of substances, such as antithrombin III, doxycycline, hydrocortisone, etanercept, or nitric oxide donors. Hydrogen inhalation or albumin affects glycocalyx positively. Sulodexide provides a positive effect on the protection and reparation of endothelial glycocalyx. This proteoglycan with antithrombotic, fibrinolytic, hypofibrinogenemic, and lipolytic function is used for the treatment of venous diseases, ischaemic heart disease, and peripheral arterial disease. A positive effect of sulodexide on renal dysfunction was documented in a model of ischaemia and reperfusion injury. Equally, a positive effect of sulodexide was described on endothelium repair after its mechanical damage.

Conclusion: Further research needs to be performed to evaluate the effect of endothelium-protectives on glycocalyx damage prevention and repair in ischaemia and reperfusion models involving large laboratory animals or in clinical trials in patients undergoing surgical revascularisation procedures.


Sources
  1. Dobson GP. Trauma of major surgery: A global problem that is not going away. International Journal of Surgery 2020;81:47–54. doi:10.1016/j.ijsu.2020.07.017.
  2. Máca J, Peteja M, Reimer P, et al. Surgical injury: comparing open surgery and laparoscopy by markers of tissue damage. Ther Clin Risk Manag. 2018;14:999–1006. doi:10.2147/TCRM.S153359.
  3. Cusack B, Buggy DJ. Anaesthesia, analgesia, and the surgical stress response. BJA Educ. 2020;20(9):321–328. doi:10.1016/j. bjae.2020.04.006.
  4. Soares ROS, Losada DM, Jordani MC, et al. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int J Mol Sci. 2019;20(20):5034. doi:10.3390/ijms20205034.
  5. Wu MY, Yiang GT, Liao WT, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cellular Physiology and Biochemistry 2018;46(4):1650–1667. doi:10.1159/000489241.
  6. Garcia V, Sessa WC. Endothelial NOS: perspective and recent developments. Br J Pharmacol. 2019;176(2):189–196. doi:10.1111/bph.14522.
  7. Möckl L. The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation. Front Cell Dev Biol. 2020;8. doi:10.3389/fcell.2020.00253.
  8. Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966;25(6):1773– 1783.
  9. Reitsma S, Slaaf DW, Vink H, et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454(3):345–359. doi:10.1007/ s00424-007-0212-8.
  10. Fernández-Sarmiento J, Salazar-Peláez LM, Carcillo JA. The endothelial glycocalyx. Pediatric Critical Care Medicine 2020;21(5):e291–e300. doi:10.1097/PCC.0000000000002266.
  11. Hahn RG, Patel V, Dull RO. Human glycocalyx shedding: Systematic review and critical appraisal. Acta Anaesthesiol Scand. 2021;65(5):590–606. doi:10.1111/ aas.13797.
  12. Astapenko D, Benes J, Pouska J, et al. Endothelial glycocalyx in acute care surgery – what anaesthesiologists need to know for clinical practice. BMC Anesthesiol. 2019;19(1):238. doi:10.1186/s12871-019-0896-2.
  13. Barry M, Pati S. Targeting repair of the vascular endothelium and glycocalyx after traumatic injury with plasma and platelet resuscitation. Matrix Biol Plus 2022;14:100107. doi:10.1016/j.mbplus.2022.100107.
  14. Sullivan RC, Rockstrom MD, Schmidt EP, et al. Endothelial glycocalyx degradation during sepsis: Causes and consequences. Matrix Biol Plus 2021;12:100094. doi:10.1016/j.mbplus.2021.100094.
  15. Abassi Z, Armaly Z, Heyman SN, et al. Glycocalyx degradation in ischemia-reperfusion injury. Am J Pathol. 2020;190(4): 752–767. doi:10.1016/j.ajpath.2019.08.019.
  16. Yanase F, Naorungroj T, Bellomo R. Glycocalyx damage biomarkers in healthy controls, abdominal surgery, and sepsis: a scoping review. Biomarkers 2020; 25(6):425–435.  doi:10.1080/1354750X.2020.1787518.
  17. Passov A, Schramko A, Salminen US, et al. Endothelial glycocalyx during early reperfusion in patients undergoing cardiac surgery. PLoS One 2021; 16(5):e0251747. doi:10.1371/journal.pone. 0251747.
  18. Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 2007;116(17): 1896–1906. doi:10.1161/CIRCULATIONA-HA. 106.684852.
  19. Lindner M, Laporte A, Elomaa L, et al. Flow-induced glycocalyx formation and cell alignment of HUVECs compared to iPSC-derived ECs for tissue engineering applications. Front Cell Dev Biol. 2022;10. doi:10.3389/fcell.2022.953062.
  20. Song JW, Goligorsky MS. Perioperative implication of the endothelial glycocalyx. Korean J Anesthesiol. 2018;71(2):92–102. doi:10.4097/kjae.2018.71.2.92.
  21. Wang WZ. Investigation of reperfusion injury and ischemic preconditioning in microsurgery. Microsurgery 2009;29(1):72–79. doi:10.1002/micr.20587.
  22. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74(5):1124–1136. doi:10.1161/01.CIR.74.5.1124.
  23. Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993;87(3):893–899. doi:10.1161/01.CIR.87.3.893.
  24. Veighey K V, Nicholas JM, Clayton T, et al. Early remote ischaemic preconditioning leads to sustained improvement in allograft function after live donor kidney transplantation: long-term outcomes in the REnal protection against ischaemia – reperfusion in transplantation (REPAIR) randomised trial. Br J Anaesth. 2019;123(5):584–591. doi:10.1016/j.bja.2019.07.019.
  25. Pierce B, Bole I, Patel V, et al. Clinical outcomes of remote ischemic preconditioning prior to cardiac surgery: A meta‐ analysis of randomized controlled trials. J Am Heart Assoc. 2017;6(2). doi:10.1161/ JAHA.116.004666.
  26. Liang F, Liu S, Liu G, et al. Remote ischaemic preconditioning versus no remote ischaemic preconditioning for vascular and endovascular surgical procedures. Cochrane Database of Systematic Reviews 2023;2023(1). doi:10.1002/ 14651858.CD008472.pub3.
  27. Papadopoulou A, Dickinson M, Samuels TL, et al. Efficacy of remote ischaemic preconditioning on outcomes following non-cardiac non-vascular surgery: a systematic review and meta-analysis. Perioperative Medicine 2023;12(1):9. doi:10.1186/s13741-023-00297-0.
  28. Chappell D, Jacob M, Hofmann-Kiefer K, et al. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res. 2009;83(2):388–396. doi:10.1093/cvr/cvp097.
  29. Chappell D, Jacob M, Hofmann-Kiefer K, et al. Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology. 2007;107(5):776–784. doi:10.1097/01.anes.0000286984.39328.96.
  30. Gao W, Fang F, Xia TJ, et al. Doxycycline can reduce glycocalyx shedding by inhibiting matrix metalloproteinases in patients undergoing cardiopulmonary bypass: A randomized controlled trial. Microvasc Res. 2022;142:104381. doi:10.1016/j.mvr.2022.104381.
  31. Nieuwdorp M, Meuwese MC, Mooij HL, et al. Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis 2009;202(1): 296–303.  doi:10.1016/j.atherosclerosis.2008.03.024.
  32. Bruegger D, Rehm M, Jacob M, et al. Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts. Crit Care 2008;12(3):R73. doi:10.1186/ cc6913.
  33. Aldecoa C, Llau JV, Nuvials X, et al. Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: a review. Ann Intensive Care 2020;10(1):85. doi:10.1186/s13613-020-00697-1.
  34. Tamura T, Sano M, Matsuoka T, et al. Hydrogen gas inhalation attenuates endothelial glycocalyx damage and stabilizes hemodynamics in a rat hemorrhagic shock model. Shock 2020;54(3):377–385. doi:10.1097/SHK.0000000000001459.
  35. Harenberg J. Review of pharmacodynamics, pharmacokinetics, and therapeutic properites of sulodexide. Med Res Rev. 1998;18(1):1–20. doi:10.1002/(SICI)1098-1128(199801)18:1<1:AID-MED1>3.0. CO;2-4.
  36. Hoppensteadt DA, Fareed J. Pharmacological profile of sulodexide. Int Angiol. 2014;33(3):229–235.
  37. Bignamini AA, Matuška J. Sulodexide for the symptoms and signs of chronic venous disease: A systematic review and meta-analysis. Adv Ther. 2020;37 (3):1013–1033. doi:10.1007/s12325-020-01232-1.
  38. Lasierra-Cirujeda J. Use of sulodexide in patients with peripheral vascular disease. J Blood Med. Online 2010 June;105. doi:10.2147/JBM.S10558.
  39. Yin J, Chen W, Ma F, et al. Sulodexide pretreatment attenuates renal ischemia-reperfusion injury in rats. Oncotarget 2017;8(6):9986–9995. doi:10.18632/oncotarget.14309.
  40. Li T, Liu X, Zhao Z, et al. Sulodexide recovers endothelial function through reconstructing glycocalyx in the balloon-injury rat carotid artery model. Oncotarget 2017;8(53):91350–91361.  doi:10.18632/oncotarget.20518.
Labels
Surgery Orthopaedics Trauma surgery
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#