#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Using photodynamic diagnosis and narrow band imaging for diagnosing and treating non-muscle-invasive bladder cancer


Authors: Antonín Brisuda;  Jan Hrbáček;  Marek Babjuk
Authors‘ workplace: Urologická klinika 2. LF UK a FN Motol, Praha
Published in: Ces Urol 2013; 17(2): 79-87
Category: Review article

Overview

Photodynamic diagnosis (PDD) and narrow band imaging (NBI) represent technologies which are complementary to standard white light cystoscopy and transurethral resection of the bladder (TURB) for the diagnostics of non-muscle-invasive bladder cancer. With improved sensitivity they facilitate endoscopy and enable a more precise diagnosis to be made. PDD endoscopy uses an intravesical instillation of a photosensitiser and subsequent visualization of its activity using “blue” light. PDD significantly increases the detection rate of bladder tumors, especially high-grade lesions. Several studies documented a significant improvement in diagnosis as evident from a reduction in rate of and time to recurrence. Its universal use has been limited by high cost and the fact that the procedure is more involved for patients and hospital staff. NBI on the other hand is cheap and easy to use. The technology is based on two short wave length light beams generated with the use of a light filter. Compared to white light, NBI significantly improves detection rates of small bladder lesions, including small recurrences. Moreover, it better defines tumor margins. Large, randomized, prospective trials to determine the value of NBI are currently ongoing. Trials comparing the ability of NBI and PDD to reduce recurrence rates would be of great value.

Key words:
urinary bladder carcinoma, non-muscle-invasive bladder cancer, transurethral resection, narrow band imaging, photodynamic diagnosis.


Sources

1. Sylvester RJ, van der Meijden AP, Oosterlinck W. Predicting recurrence and progression in individual patients with stage TaT1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006; 49(3): 466–465.

2. Holmang S, Johansson SL. Stage Ta-T1 bladder cancer: the relationship between findings at first follow-up cystoscopy and subsequent recurrence and progression. J Urol 2002; 167(4): 1634–1637.

3. Brausi M, Collette L, Kurth K, et al. Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of bladder: a combined analysis of seven EORTC studies. Eur Urol 2002; 41(5): 523–531.

4. Brausi MA, Gavioli M, Peracchia G, et al. Dedicated teaching programs can improve the quality of TUR of non-muscle-invasive bladder tumours (NMIBT): experience of a single institution. Eur Urol Suppl 2008; 7: 180.

5. Mariappan P, Zachou A, Grigor KM, et al. Detrusor muscle in the first, apparently complete transurethral resection of bladder tumour specimen is a surrogate marker of resection quality, predicts risk of early recurrence, and is dependent on operator experience. Eur Urol 2010; 57(5): 843–849.

6. Mariappan P, Finney SM, Head E, et al. Good quality white-light transurethral resection of bladder tumours (GQ-WLTURB) with experienced surgeons performing complete resections and obtaining detrusor muscle reduces early recurrence in new non-muscle-invasive bladder cancer: validation across time and place and recommendation for benchmarking. BJU Int. 2012; 109(11): 1666–1673.

7. Krieg R, et al. Metabolic characterization of tumor cell–specific protoporphyrin IX accumulation after exposure to 5–aminolevulinic acid in human colonic cells. Photochem Photobiol 2002; 76: 518–525.

8. Kennedy JC, et al. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 1990; 6: 143–148.

9. Marti A, et al. Optimisation of the formation and distribution of protoporphyrin IX in the urothelium: an in vitro approach. J Urol 1999; 162: 546–552.

10. Jichlinski P, et al. Hexyl aminolevulinate fluorescence cystoscopy: a new diagnostic tool for photodiagnosis of superficial bladder cancer – a multicenter study. J Urol 2003; 170: 226–229.

11. Schmidbauer J, et al. Improved detection of urothelial carcinoma in situ with hexaminolevulinate (HAL) fluorescence cystoscopy. J Urol 2004; 171: 135–138.

12. Fradet Y, et al. A comparison of hexaminolevulinate (HAL) fluorescence cystoskopy and white light cystoscopy for the detection of carcinoma in situ (CIS) in patients with bladder cancer: a phase III, multicenter study. J Urol 2007; 178: 68–73.

13. Fradet Y, Grossman HB, Gomella L, et al. A comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of carcinoma in situ in patients with bladder cancer: a phase III, multicenter study. J Urol 2007; 178(1): 68–73; discussion 73.

14. Grossman H, et al. A phase III, multicenter comparison of hexaminolevulinate (HAL) fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patiens with bladder cancer. J Urol 2007; 178: 62–67.

15. Jocham D, Witjes F, Wagner S, et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol 2005; 174(3): 862–866; discussion 866.

16. Kriegmair M, et al. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol 1996; 155: 105–109.

17. Babjuk M, Soukup V, Petřík R, Jirsa M, Dvořácek J. 5-aminolaevulinic acid-induced fluorescence cystoscopy during transurethral resection reduces the risk of recurrence in stage Ta/T1 bladder cancer. BJU Int. 2005; 96(6): 798–802.

18. Schumacher MC, Holmäng S, Davidsson T, et al. Transurethral resection of non-muscle-invasive bladder transitional cell cancers with or without 5-aminolevulinic Acid under visible and fluorescent light: results of a prospective, randomised, multicentre study. Eur Urol 2010; 57(2): 293–299.

19. Stenzl A. Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer. J Urol 2010; 184(5): 1907–1913.

20. Grossman HB, Stenzl A, Fradet Y, et al. Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol 2012; 188(1): 58–62.

21. Geavlete B, Multescu R, Georgescu D, et al. Treatment changes and long-term recurrence rates after hexaminolevulinate (HAL) fluorescence cystoscopy: does it really make a difference in patients with non-muscle-invasive bladder cancer (NMIBC)? BJU Int. 2012; 109(4): 549–556.

22. Tatsugami K. Evaluation of narrow-band imaging as a complementary method for the detection of bladder cancer. J Endourol 2010; 24(11): 1807–1811.

23. Brisuda A, Hrbáček J, Čechová M, et al. Role Narrow band imaging v diagnostice a léčbě uroteliálního karcinomu močového měchýře. Vybrané otázky onkologie XVI. Praha: Galén 2012; 16–17.

24. Herr HW, Donat SM. A comparison of white-light cystoscopy and narrow-band imaging cystoscopy to detect bladder tumour recurrences. BJU Int. 2008; 102(9): 1111–1114.

25. Naselli A, Introini C, Bertolotto F, et al. Narrow band imaging for detecting residual/recurrent cancerous tissue during second transurethral resection of newly diagnosed non-muscle-invasive high-grade bladder cancer. BJU Int. 2010; 105(2): 208–211.

26. Herr HW. Narrow-band imaging cystoscopy to evaluate the response to bacille Calmette-Guérin therapy: preliminary results. BJU Int. 2010; 105(3): 314–316.

27. Herr HW, Donat SM. Reduced bladder tumour recurrence rate associated with narrow-band imaging surveillance cystoscopy. BJU Int. 2011; 107(3): 396–398.

28. Naselli A, Introini C, Timossi L, et al. A randomized prospective trial to assess the impact of transurethral resection in narrow band imaging modality on non-muscle-invasive bladder cancer recurrence. Eur Urol 2012; 61(5): 908–913.

29. Malmstrom PU, Hedelin H, Thomas YK, et al. Fluorescence-guided transurethral resection of bladder cancer using hexaminolevulinate: analysis of health economic impact in Sweden. Scand J Urol Nephrol 2009; 43: 192.

30. Zaak D, Wieland WF, Stief CG, et al. Routine use of photodynamic diagnosis of bladder cancer: practical and economic issues. Eur Urol Suppl. 2008; 7: 536.

Labels
Paediatric urologist Nephrology Urology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#