#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Attenuation of chronic inflammation by exercise or by modifying the intestinal mikrobiome as causal measures on osteoporosis


Authors: J. Štěpán
Authors‘ workplace: Revmatologická klinika 1. LF UK Praha ;  Revmatologický ústav, Praha
Published in: Čes. Revmatol., 26, 2018, No. 3, p. 142-150.
Category: Review Article

Overview

Physical activity and nutritional adjustments inhibits chronic inflammation and biological signs of frailty syndrome. They allow to keep the necessary positive balance of bone remodeling. Therefore, they are causal measures to manage the involutional osteoporosis and generally in the prevention of osteoporosis. Although clinical studies have confirmed the slowing decline in BMD and decrease in fracture risk with age in improving physical activity and depending on dietary regimens, the necessary randomised clinical studies confirming a non-inferiority of these measures in comparison with the pharmacological treatment for osteoporosis.

Key words:

Aging, bone quality, microbiome, involutional osteoporosis, physical activity, sarcopenia


Sources

1. Klibanski A, Adams-Campbell L, Bassford T, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785–95.

2. Svedbom A, Hernlund E, Ivergård M, et al. Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos 2013; 8(137): 35–42.

3. Lakatos P, Takacs I, Marton I, et al. A retrospective longitudinal database study of persistence and compliance with treatment of osteoporosis in Hungary. Calcif Tissue Int 2016; 98(3): 215–25.

4. Fuksa L, Vytrisalova M. Adherence to denosumab in the treatment of osteoporosis and its utilization in the Czech Republic. Curr Med Res Opin 2015; 31(9): 1645–53.

5. Kim SC, Kim DH, Mogun H, et al. Impact of the U.S. Food and Drug Administration's safety-related announcements on the use of bisphosphonates after hip fracture. J Bone Miner Res 2016; 31(8): 1536–40.

6. Levy HB. Polypharmacy reduction strategies: Tips on incorporating American Geriatrics Society Beers and Screening Tool of older people's prescriptions criteria. Clin Geriatr Med 2017; 33(2): 177–87.

7. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56(3): M146-56.

8. Tchkonia T, Zhu Y, van Deursen J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123(3): 966–72.

9. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614–36.

10. Zhao J, Fuhrmann-Stroissnigg H, Gurkar AU, et al. Quantitative analysis of cellular senescence in culture and in vivo. Curr Protoc Cytom 2017; 79: 9.51.1-9.51.25.

11. Kim HN, Chang J, Shao L, et al. DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 2017; 16(4): 693–703.

12. Farr JN, Fraser DG, Wang H, et al. Identification of senescent cells in the bne microenvironment. J Bone Miner Res 2016; 31(11): 1920–9.

13. Piemontese M, Almeida M, Robling AG, et al. Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight 2017; 2(17):e93771.

14. Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80: 2–13.

15. Lemos DR, Eisner C, Hopkins CI, et al. Skeletal muscle-resident MSCs and bone formation. Bone 2015; 80: 19–23.

16. Brotto M, Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone 2015; 80: 109–14.

17. Ferretti JL, Capozza RF, Cointry GR, et al. Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 1998; 22(6): 683–90.

18. Ethgen O, Beaudart C, Buckinx F, et al. The future prevalence of sarcopenia in Europe: A claim for publichealth action. Calcif Tissue Int 2017; 100(3): 229–34.

19. Trajanoska K, Schoufour JD, Darweesh SK, et al. Sarcopenia and its clinical correlates in the general population: The Rotterdam Study. J Bone Miner Res 2018; 33(7): 1209-18.

20. Rosa J, Šenk F, Palička V. Diagnostika a léčba postmenopauzální osteoporózy. Stanovisko Společnosti pro metabolická onemocnění skeletu ČLS JEP 2015 Osteologicky Bull 2016; 20(4): 150–68.

21. Uchiyama S, Ikegami S, Kamimura M, et al. The skeletal muscle cross sectional area in long-term bisphosphonate users is smaller than that of bone mineral density-matched controls with increased serum pentosidine concentrations. Bone 2015; 75: 84–7.

22. Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 2017; 23(9): 1072–9.

23. Haugeberg G, Helgetveit KB, Forre O, et al. Generalized bone loss in early rheumatoid arthritis patients followed for ten years in the biologic treatment era. BMC Musculoskelet Disord 2014; 15: 289.

24. Štěpán J. Osteoporóza, chronický zánět, mikrobiom a estrogeny. Remedia 2018; 28(1): 28–34.

25. Chang J, Liu F, Lee M, et al. NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation. Proc Natl Acad Sci U S A 2013; 110(23): 9469–74.

26. Yeremenko N, Zwerina K, Rigter G, et al. Tumor necrosis factor and interleukin-6 differentially regulate Dkk-1 in the inflamed arthritic joint. Arthritis Rheumatol 2015; 67(8): 2071–5.

27. Tyagi AM, Mansoori MN, Srivastava K, et al. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-alpha antibodies. J Bone Miner Res 2014; 29(9):1981–92.

28. Hubbard RE, Woodhouse KW. Frailty, inflammation and the elderly. Biogerontology 2010; 11(5): 635–41.

29. Fulop T, Larbi A, Witkowski JM, et al. Aging, frailty and age-related diseases. Biogerontology 2010; 11(5): 547–63.

30. Bano G, Trevisan C, Carraro S, et al. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017; 96: 10–5.

31. Aleman H, Esparza J, Ramirez FA, et al. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age Ageing 2011; 40(4): 469–75.

32. Geffken DF, Cushman M, Burke GL, et al. Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol 2001; 153(3): 242–50.

33. Pfeifer M, Sinaki M, Geusens P, Boonen S, et al. Musculoskeletal rehabilitation in osteoporosis: a review. J Bone Miner Res 2004; 19(8): 1208–14.

34. Forsen L, Bjorndal A, Bjartveit K, et al. Interaction between current smoking, leanness, and physical inactivity in the prediction of hip fracture. J Bone Miner Res 1994; 9(11): 1671–8.

35. Stattin K, Michaelsson K, Larsson SC, et al. Leisure-time physical activity and risk of fracture: A cohort study of 66,940 men and women. J Bone Miner Res 2017; 32(8): 1599–606.

36. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014; 146(6): 1489–99.

37. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121–41.

38. Taneja V. Microbiome in 2016: T follicular helper cells and the gut microbiome in arthritis. Nat Rev Rheumatol 2017; 13(2): 72–4.

39. Weitzmann MN. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo) 2013; 2013: 125705.

40. Li JY, Chassaing B, Tyagi AM, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 2016;126(6): 2049–63.

41. Byberg L, Bellavia A, Larsson SC, et al. Mediterranean Diet and Hip Fracture in Swedish Men and Women. J Bone Miner Res 2016; 31(12): 2098–105.

42. Orchard T, Yildiz V, Steck SE, et al. Dietary inflammatory index, bone mineral density, and risk of fracture in postmenopausal women: Results from the Women's Health Initiative. J Bone Miner Res 2017; 32(5): 1136–46.

43. Jafarnejad S, Djafarian K, Fazeli MR, et al. Effects of a Multispecies Probiotic Supplement on Bone Health in Osteopenic Postmenopausal Women: A Randomized, Double-blind, Controlled Trial. J Am Coll Nutr 2017; 36(7): 497–506.

44. Slevin MM, Allsopp PJ, Magee PJ, et al. Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women. J Nutr 2014; 144(3): 297–304.

45. Puth MT, Klaschik M, Schmid M, et al. Prevalence and comorbidity of osteoporosis- a cross-sectional analysis on 10,660 adults aged 50 years and older in Germany. BMC Musculoskelet Disord 2018; 19(1): 144.

46. Schett G, Kiechl S, Weger S, et al. High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med 2006; 166(22): 2495–501.

47. Wahlin-Larsson B, Carnac G, Kadi F. The influence of systemic inflammation on skeletal muscle in physically active elderly women. Age (Dordr) 2014; 36(5): 9718.

48. Mikkelsen UR, Couppe C, Karlsen A, et al. Life-long endurance exercise in humans: circulating levels of inflammatory markers and leg muscle size. Mech Ageing Dev 2013; 134(11-12): 531–40.

49. Watson SL, Weeks BK, Weis LJ, et al. High-Intensity Resistance and Impact Training Improves Bone Mineral Density and Physical Function in Postmenopausal Women With Osteopenia and Osteoporosis: The LIFTMOR Randomized Controlled Trial. J Bone Miner Res 2018; 33(2): 211–20.

50. Watson SL, Weeks BK, Weis LJ, et al. Heavy resistance training is safe and improves bone, function, and stature in postmenopausal women with low to very low bone mass: novel early findings from the LIFTMOR trial. Osteoporos Int 2015; 26(12): 2889–94.

51. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39(4): 412–23.

52. American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 10 ed. Philadelphia: Lippincott Williams & Wilkins; 2018.

Labels
Dermatology & STDs Paediatric rheumatology Rheumatology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#