#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Sperm navigation mechanisms


Authors: Michal Ješeta;  Karolína Lošťáková;  Lenka Mekiňová;  Eva Lousová;  Kateřina Remundová;  Robert Hudeček
Authors‘ workplace: Gynekologicko-porodnická klinika LF MU a FN Brno
Published in: Ceska Gynekol 2025; 90(6): 486-494
Category:
doi: https://doi.org/10.48095/cccg2025486

Overview

Objective: Mechanisms of sperm navigation are important for understanding the principles of sperm selection prior to fertilization. The aim of this work is to provide an overview of current knowledge about the physiological process of sperm navigation from ejaculation to fertilization of the ovulated oocyte. Methods: Literature search of the PubMed database published up to June 2025 with terms focusing on “sperm navigation,” “fertilization,” and “chemoattractants”. Results: The principles of sperm navigation in the invivo environment are still unclear in humans. Currently, there are simple invivo studies performed on model animals, as well as a number of invitro studies on human sperm. Based on these results, three main navigation systems are described: rheotaxis, thermotaxis, and chemotaxis. Rheotaxis acts over the longest distances and stimulates sperm movement against the flow of fluid. Thermotaxis acts over a shorter distance and guides sperm to places with higher temperatures. Chemotaxis acts over the shortest distance, attracting capacitated sperm to places where the ovulated oocyte is located. Conclusion: Given how massively the sperm microinjection technique is used in the treatment of human infertility, it is important to carefully select sperm prior to fertilization. Knowledge of the principles of human sperm selection in invivo conditions is crucial for effective sperm selection in the laboratory.

Keywords:

oocyte – Sperm – Fertilization – sperm navigation – chemoattractants


Sources

1. Eisenbach M. Sperm navigation in humans: a concerted action of multiple means. Commun Biol 2025; 8 (1): 923. doi: 10.1038/s42003-025-08358-4.

2. Jeon BG, Moon JS, Kim KC et al. Follicular fluid enhances sperm attraction and its motility in human. J Assist Reprod Genet 2001; 18 (8): 407–412. doi: 10.1023/a: 1016674302652.

3. Olaniyan OT, Dare A, Okotie GE et al. Ovarian odorant-like biomolecules in promoting chemotaxis behavior of spermatozoa olfactory receptors during migration, maturation, and fertilization. Middle East Fertil Soc J 2021; 26 (1): 3. doi: 10.1186/s43043-020-00049-w.

4. Ramal-Sanchez M, Bernabò N, Valbonetti L et al. Role and modulation of TRPV1 in mammalian spermatozoa: an updated review. Int J Mol Sci 2021; 22 (9): 4306. doi: 10.3390/ijms22094306.

5. Zhang Z, Liu J, Meriano J et al. Human sperm rheotaxis: a passive physical process. Sci Rep 2016; 6 : 23553. doi: 10.1038/srep23553.

6. Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol CB 2013; 23 (6): 443–452. doi: 10.1016/j.cub.2013.02.007.

7. Schiffer C, Rieger S, Brenker C et al. Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca2+ signaling. EMBO J 2020; 39 (4): e102363. doi: 10.15252/embj.2019102363.

8. Kantsler V, Dunkel J, Blayney M et al. Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 2014; 3: e02403. doi: 10.7554/eLife.02403.

9. Teves ME, Guidobaldi HA, Uñates DR et al. Molecular mechanism for human sperm chemotaxis mediated by progesterone. PloS One 2009; 4 (12): e8211. doi: 10.1371/journal.pone.0008211.

10. Bahat A, Caplan SR, Eisenbach M. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PloS One 2012; 7 (7): e41915. doi: 10.1371/journal.pone.0041915.

11. Pérez-Cerezales S, Boryshpolets S, Afanzar O et al. Involvement of opsins in mammalian sperm thermotaxis. Sci Rep 2015; 5 : 16146. doi: 10.1038/srep16146.

12. Roy D, Levi K, Kiss V et al. Rhodopsin and melanopsin coexist in mammalian sperm cells and activate different signaling pathways for thermotaxis. Sci Rep 2020; 10 (1): 112. doi: 10.1038/s41598-019-56846-5.

13. Chen S, Chen J, Qin Z et al. Microfluidic thermotaxic selection of highly motile sperm and in vitro fertilization. Bio-Des Manuf 2024; 7 (5): 687–700. doi: 10.1007/s42242-024-00306-1.

14. Pérez-Cerezales S, Laguna-Barraza, R, de Castro AC et al. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep 2018; 8 (1): 2902. doi: 10.1038/s41598-018-21335-8.

15. Pfeffer W. Locomotorische Richtungsbewegungen durch chemische Reize. In: Untersuchungen aus dem botanischen Institut zu Tübingen. Bd. I, Heft 3. Leipzig: W. Engelmann 1884 : 363–482.

16. Lillie FR. The production of sperm iso-agglutinins by ova. Science 1912; 36 (929): 527–530. doi: 10.1126/science.36.929.527.

17. Ralt D, Manor M, Cohen-Dayag A et al. Chemotaxis and chemokinesis of human spermatozoa to follicular factors. Biol Reprod 1994; 50 (4): 774–785. doi: 10.1095/biolreprod50.4.774.

18. Bahat A, Eisenbach M, Tur-Kaspa I. Periovulatory increase in temperature difference within the rabbit oviduct. Hum Reprod 2005; 20 (8): 2118–2121. doi: 10.1093/humrep/dei006.

19. Ali MA, Wang Y, Qin Z et al. Odorant and taste receptors in sperm chemotaxis and cryopreservation: roles and implications in sperm capacitation, motility and fertility. Genes 2021; 12 (4): 488. doi: 10.3390/genes12040488.

20. Yoshida M, Yoshida K. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol Hum Reprod 2011; 17 (8): 457–465. doi: 10.1093/molehr/gar041.

21. Rahman MS, Kwon WS, Pang MG. Calcium influx and male fertility in the context of the sperm proteome: an update. BioMed Res Int 2014; 2014 : 841615. doi: 10.1155/2014/841615.

22. Spehr M, Schwane K, Riffell JA et al. Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. Mol Cell Endocrinol 2006; 250 (1–2): 128–136. doi: 10.1016/j.mce.2005.12.035.

23. Ralt D, Goldenberg M, Fetterolf P et al. Sperm attraction to a follicular factor (s) correlates with human egg fertilizability. Proc Natl Acad Sci U S A 1991; 88 (7): 2840–2844. doi: 10.1073/pnas.88.7.2840.

24. Sun F, Bahat A, Gakamsky A et al. Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod 2005; 20 (3): 761–767. doi: 10.1093/humrep/deh657.

25. Harper MJ. Sperm and egg transport. In: Austin CR (eds). Reproduction in mammals. I. Germ cells and fertilization. 2nd ed. Cambridge: Cambridge University Press 1982 : 102–127.

26. Tacconis P, Revelli A, Massobrio M et al. Chemotactic responsiveness of human spermatozoa to follicular fluid is enhanced by capacitation but is impaired in dyspermic semen. J Assist Reprod Genet 2001; 18 (1): 36–44. doi: 10.1023/a: 1026402830232.

27. Sun F, Giojalas LC, Rovasio RA et al. Lack of species-specificity in mammalian sperm chemotaxis. Dev Biol 2003; 255 (2): 423–427. doi: 10.1016/s0012-1606 (02) 00090-8.

28. Teves ME, Barbano F, Guidobaldi HA et al. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil Steril 2006; 86 (3): 745–749. doi: 10.1016/ j.fertnstert.2006.02.080.

29. Jaiswal BS, Tur-Kaspa I, Dor J et al. Human sperm chemotaxis: is progesterone a chemoattractant? Biol Reprod 1999; 60 (6): 1314–1319. doi: 10.1095/biolreprod60.6.1314.

30. Roldan ER, Murase T, Shi QX. Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science 1994; 266 (5190): 1578–1581. doi: 10.1126/science.7985030.

31. Harper CV, Kirkman-Brown JC, Barratt CL et al. Encoding of progesterone stimulus intensity by intracellular [Ca2+] ([Ca2+]i) in human spermatozoa. Biochem J 2003; 372 (Pt 2): 407–417. doi: 10.1042/BJ20021560.

32. Revelli A, Massobrio M, Tesarik J. Nongenomic actions of steroid hormones in reproductive tissues. Endocr Rev 1998; 19 (1): 3–17. doi: 10.1210/edrv.19.1.0322.

33. Miller MR, Mannowetz N, Iavarone AT et al. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science 2016; 352 (6285): 555–559. doi: 10.1126/science.aad6887.

34. Ren D, Navarro B, Perez G et al. A sperm ion channel required for sperm motility and male fertility. Nature 2001; 413 (6856): 603–609. doi: 10.1038/35098027.

35. Diao R, Fok KL, Chen H et al. Deficient human b-defensin 1 underlies male infertility associated with poor sperm motility and genital tract infection. Sci Transl Med 2014; 6 (249): 249ra108.doi: 10.1126/scitranslmed.3009071.

36. Strünker T, Goodwin N, Brenker C et al. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 2011; 471 (7338): 382–386. doi: 10.1038/nature09769.

37. Gu X, Wang X. An overview of recent analysis and detection of acetylcholine. Anal Biochem 2021; 632 : 114381. doi: 10.1016/j.ab.2021. 114381.

38. Wessler I, Kirkpatrick CJ, Racké K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther 1998; 77 (1): 59–79. doi: 10.1016/s0163-7258 (97) 00085-5.

39. Sliwa L. Chemotaction of mouse spermatozoa induced by certain hormones. Arch Androl 1995; 35 (2): 105–110. doi: 10.3109/01485019508987860.

40. Baccetti B, Burrini AG, Collodel G et al. Localisation of two classes of acetylcholine receptor-like molecules in sperms of different animal species. Zygote Camb Engl 1995; 3 (3): 207–217. doi: 10.1017/s0967199400002604.

41. Fritz S, Wessler I, Breitling R et al. Expression of muscarinic receptor types in the primate ovary and evidence for nonneuronal acetylcholine synthesis. J Clin Endocrinol Metab 2001; 86 (1): 349–354. doi: 10.1210/jcem.86.1.7146.

42. Bray C, Son JH, Meizel S. A nicotinic acetylcholine receptor is involved in the arosome reaction of human sperm initiated by recombinant human ZP3. Biol Reprod 2002; 67 (3): 782–788. doi: 10.1095/biolreprod.102.004580.

43. Silvestroni L, Palleschi S, Guglielmi R et al. Identification and localization of atrial natriuretic factor receptors in human spermatozoa. Arch Androl 1992; 28 (2): 75–82. doi: 10.3109/01485019208987683.

44. Zamir N, Rivenkreitman R, Manor M et al. Atrial natriuretic peptide attracts human spermatozoa in vitro. Biochem Biophys Res Commun 1993; 197 (1): 116–122. doi: 10.1006/bbrc.1993.2449.

45. Sundsfjord JA, Forsdahl F, Thibault G. Physiological levels of immunoreactive ANH-like peptides in human follicular fluid. Acta Endocrinol (Copenh) 1989; 121 (4): 578–580. doi: 10.1530/acta.0.1210578.

46. Anderson RA, Feathergill KA, Rawlins RG et al. Atrial natriuretic peptide: a chemoattractant of human spermatozoa by a guanylate cyclase-dependent pathway. Mol Reprod Dev 1995; 40 (3): 371–378. doi: 10.1002/mrd.1080400314.

47. Spehr M, Gisselmann G, Poplawski A et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 2003; 299 (5615): 2054–2058. doi: 10.1126/science.1080376.

48. Spehr M, Schwane K, Riffell JA et al. Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis. J Biol Chem 2004; 279 (38): 40194–40203. doi: 10.1074/jbc.M403913200.

49. Jarczak J, Kościuczuk EM, Lipowski P et al. Defensins: natural component of human innate immunity. Hum Immunol 2013; 74 (9): 1069–1079. doi: 10.1016/j.humimm.2013.05.008.

50. Zhai YJ, Feng Y, Ma X et al. Defensins: defenders of human reproductive health. Hum Reprod Update 2023; 29 (1): 126–154. doi: 10.1093/humupd/dmac032.

51. Zupin L, Polesello V, Martinelli M et al. Human b-defensin 1 in follicular fluid and semen: impact on fertility. J Assist Reprod Genet 2019; 36 (4): 787–797. doi: 10.1007/s10815-019-01409-w.

52. Li X, Yuan C, Shi J et al. b-Defensin 19/119 mediates sperm chemotaxis and is associated with idiopathic infertility. Cell Rep Med 2022; 3 (12): 100825. doi: 10.1016/j.xcrm.2022.100825.

53. Murphy PM, Baggiolini M, Charo IF et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52 (1): 145–176.

54. Duan YG, Wehry UP, Buhren BA et al. CCL20 -⁠ -CCR6 axis directs sperm-oocyte interaction and its dysregulation correlates/associates with male infertility. Biol Reprod 2020; 103 (3): 630–642. doi: 10.1093/biolre/ioaa072.

55. Caballero-Campo P, Buffone MG, Benencia F et al. A role for the chemokine receptor CCR6 in mammalian sperm motility and chemotaxis. J Cell Physiol 2014; 229 (1): 68–78. doi: 10.1002/jcp. 24418.

56. Alam R, Stafford S, Forsythe P et al. RANTES is a chemotactic and activating factor for human eosinophils. J Immunol 1993; 150 (8 Pt 1): 3442–3448.

57. Naz RK, Leslie MH. Immunobiologic implication of RANTES in seminal plasma of fertile, infertile and immunoinfertile men. Am J Reprod Immunol 2000; 44 (4): 197–204. doi: 10.1111/j.8755-8920.2000.440402.x.

58. Isobe T, Minoura H, Tanaka K et al. The effect of RANTES on human sperm chemotaxis. Hum Reprod 2002; 17 (6): 1441–1446. doi: 10.1093/ humrep/17.6.1441.

59. Guidobaldi HA, Cubilla M, Moreno A et al. Sperm chemorepulsion, a supplementary mechanism to regulate fertilization. Hum Reprod 2017; 32 (8): 1560–1573. doi: 10.1093/humrep/ dex232.

60. Cohen-Dayag A, Tur-Kaspa I, Dor J et al. Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors. Proc Natl Acad Sci U S A 1995; 92 (24): 11039–11043. doi: 10.1073/pnas.92.24.11039.

61. Lymbery RA, Kennington WJ, Evans JP. Egg chemoattractants moderate intraspecific sperm competition. Evol Lett 2017; 1 (6): 317–327. doi: 10.1002/evl3.34.

62. Revelli A, Ghigo D, Moffa F et al. Guanylate cyclase activity and sperm function. Endocr Rev 2002; 23 (4): 484–494. doi: 10.1210/er.2001-0020.

63. Darszon A, Beltrán C, Felix R et al. Ion transport in sperm signaling. Dev Biol 2001; 240 (1): 1–14. doi: 10.1006/dbio.2001.0387.

64. Nishigaki T, Wood CD, Tatsu Y et al. A sea urchin egg jelly peptide induces a cGMP-mediated decrease in sperm intracellular Ca (2+) before its increase. Dev Biol 2004; 272 (2): 376–388. doi: 10.1016/j.ydbio.2004.04.035.

65. Boryshpolets S, Pérez-Cerezales S, Eisenbach M. Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum Reprod 2015; 30 (4): 884–892. doi: 10.1093/humrep/dev002.

66. Kim AM, Bernhardt ML, Kong BY et al. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol 2011; 6 (7): 716–723. doi: 10.1021/cb200084y.

67. Eberhard WG. Female control: sexual selection by cryptic female choice. New Jersey: Princeton University Press 1996.

68. Jokiniemi A, Magris M, Ritari J et al. Post-copulatory genetic matchmaking: HLA-dependent effects of cervical mucus on human sperm function. Pros Biol Sci 2020; 287 (1933): 20201682. doi: 10.1098/rspb.2020.1682.

69. Fitzpatrick JL, Willis C, Devigili A et al. Chemical signals from eggs facilitate cryptic female choice in humans. Proc Biol Sci 2020; 287 (1928): 20200805. doi: 10.1098/rspb.2020.0805.

70. Eisenbach M, Giojalas LC. Sperm guidance in mammals –⁠ an unpaved road to the egg. Nat Rev Mol Cell Biol 2006; 7 (4): 276–285. doi: 10.1038/nrm1893.

ORCID autorů

M. Ješeta 0000-0003-1778-3454

L. Mekiňová 0000-0002-1839-2802

K. Remundová 0000-0002-7938-8233

R. Hudeček 0000-0003-0617-0126

Doručeno/Submitted: 23. 7. 2025

Přijato/Accepted: 5. 8. 2025

doc. Ing. Michal Ješeta, Ph.D.

Gynekologicko-porodnická klinika

LF MU a FN Brno

Jihlavská 20

625 00 Brno

jeseta.michal@fnbrno.cz

Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicine

Article was published in

Czech Gynaecology

Issue 6

2025 Issue 6

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#