#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Films from poly-γ-glutamic acid and poly-ε-lysine as the potential wound dressings – formulation, preparation and evaluation


Authors: Kamila Světlíková;  Ruta Masteiková;  Kateřina Tenorová;  David Vetchý;  Jurga Bernatoniene
Published in: Čes. slov. Farm., 2021; 70, 186-195
Category: Original Article
doi: https://doi.org/https://doi.org/10.5817/CSF2021-5-186

Overview

Film wound dressings represent one of the options in wound therapy. Various polymers can be used for their production. Currently, research focuses on materials of natural origin, more friendly to the human body, which are in many cases able to participate actively in the wound healing process. These include polyamino acids of bacterial origin, substances that are biodegradable, non-toxic, and have a great potential for an application not only in the medical field. From the point of view of film wound dressing formulation, poly-γ-glutamic acid (PGA), as a film-forming agent, and poly-ε-lysine (PL), characterized by antimicrobial activity, are of interest from this group. Therefore, the aim of our experiment was to prepare films consisting of PGA or a combination of PGA and PL with the addition of different plasticizers. The films were prepared by solvent evaporation method and then evaluated for their organoleptic (appearance, colour, transparency, ease of handling), physicochemical (thickness, density, opacity, surface pH), and mechanical properties (tensile strength and tear resistance). As a result, films showing mutual compatibility between the two polymers were obtained, with satisfactory properties for wound application.

Keywords:

films – technology – wound therapy – poly-γ-glutamic acid – poly-ε-lysine


Sources

1. Westgate S., Cutting K. F., DeLuca G., Asaad K. Collagen dressings made easy. Wounds UK 2012; 8(1), 1–4.

2. Schmitz M., Mustafi N., Rogmans S., Kasparek S. Pilot- -study switchable film dressing & elderly skin/patients with chronic wounds: A non-interventional, non-placebo- controlled, national pilot study. Wound Med. 2020; 30, 100189.

3. Kunioka M. Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 1997; 47(5), 469–475.

4. Candela T., Fouet A. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 2006; 60(5), 1091–1098.

5. Nair P., Navale G. R., Dharne M. S. Poly-gamma-glutamic acid biopolymer: a sleeping giant with diverse applications and unique oppotunities for commercialization. Biomass Conver. Biorefin. 2021; 1–19.

6. Kumar M. M. M., Xaver J. R., Gopalan N., Ramana K. V., Sharma R. K. Poly (γ-) Glutamic Acid: A Promising Biopolymer. Def. Life Sci. J. 2018; 3, 301–306.

7. Bajaj I., Singhal R. Poly (glutamic acid) – an emerging biopolymer of commercial interest. Bioresour. Technol. 2011; 102(10), 5551–5561.

8. Pereira A. E. S., Sandoval-Herrera I. E., Zavala-Betancourt S. A., Oliveira H. C., Ledezma-Pérez A. S., Romero J., Fraceto L. F. γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydr. Polym. 2017; 157, 1862–1873.

9. Sabbah M., Di Pierro P., Ruffo F., Schiraldi C., Alfano A., Cammarota M., Porta R. Glutamic Acid as Repeating Building Block for Bio-Based Films. Polymers 2020; 12(7), 1613.

10. Shao Z., Fang S., Li Y., Chen J., Meng Y. Physicochemical properties and formation mechanism of electrostatic complexes based on ε-polylysine and whey protein: Experimental and molecular dynamics simulations study. Int. J. Biol. Macromol. 2018; 118, 2208– 2215.

11. Zhang L., Li R., Dong F., Tian A., Li Z., Dai Y. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-l-lysine. Food Chem. 2015; 166, 107–114.

12. Luz C., Calpe J., Saladino F., Luciano F. B., Fernandez- Franzón M., Mañes J., Meca G. Antimicrobial packaging based on ε‐polylysine bioactive film for the control of mycotoxigenic fungi in vitro and in bread. J. Food Process. Preserv. 2018; 42(1), 1–6.

13. Li S., Zhang L., Liu M., Wang X., Zhao G, Zong W. Effect of poly-ε-lysine incorporated into alginate-based edible coatings on microbial and physicochemical properties of fresh-cut kiwifruit. Postharvest Biol. Technol. 2017; 134, 114–121.

14. Chheda A. H., Vernekar M. R. A natural preservative ε-poly-L-lysine: fermentative production and applications in food industry. Int. Food Res. J. 2015; 22(1), 23–30.

15. Fürsatz M., Skog M., Sivlér P., Palm E., Aronsson C., Skallberg A., Greczynski G., Khalaf H., Bengtsson T., Aili D. Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L- -lysine. Biom. Mater. 2018; 13(2), 1–11.

16. Hoffmann E. M., Breitenbach A., Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv. 2011; 8(3), 299–316.

17. Vinklárková L., Masteiková R., Vetchý D., Doležel P., Bernatonienė J. Formulation of novel layered sodium carboxymethylcellulose film wound dressings with ibuprofen for alleviating wound pain. Biomed Res. Int. 2015; 2015, 1–11.

18. Dixit R. P., Puthli S. P. Oral strip technology: overview and future potential. J. Control. Release 2009; 139(2), 94–107.

19. Thomas S. Exudate-handling mechanism of the Cutimed ® cavity range of foam dressings. London: BSN Medical 2009. https://pdf4pro.com/view/exudate-handlingmechanisms- of-the-cutimed-153d42.html (26. 6.2021).

20. Rezvanian M., Amin M. C. I. M., Ng S. F. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr. Polym. 2016; 137, 295–304.

21. Karimi M., Yazdi F. T., Mortazavi S. A., Shahabi-Ghahfarrokhi I., Chamani J. Development of active antimicrobial poly (l-glutamic) acid-poly (l-lysine) packaging material to protect probiotic bacterium. Polym. Test. 2020; 83, 106338.

22. Schneider L. A., Korber A., Grabbe S., Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 2007; 298(9), 413–420.

23. Jones E. M., Cochrane C. A., Percival S. L. The effect of pH on the extracellular matrix and biofilms. Adv. in Wound Care 2015; 4(7), 431–439.

24. Pospíšilová A. Léčba chronických ran moderními krycími prostředky. Prak. lékáren. 2010; 6(6), 276–281.

25. Sussman G. Technology update: understanding film dressings. Wounds Int. 2010; 1(2), 1–4.

26. Günther T., Theisel H., Gross M. Decoupled opacity optimization for points, lines and surfaces. Comput. Graph. Forum 2017; 36(2), 153–162.

27. Midtfjord H., Green P., Nussbaum P. A model of visual opacity for translucent colorants. J. Electron. Imaging 2018; 2018(8), 209–201.

28. Rubilar J. F., Zúñiga R. N., Osorio F., Pedreschi F. Physical properties of emulsion-based hydroxypropyl methylcellulose/whey protein isolate (HPMC/ WPI) edible films, Carbohydr. Polym. 2015; 123, 27– 38.

29. Alemán A., Mastrogiacomo I., López-Caballero M. E., Ferrari B., Montero M. P., Gómez-Guillén M. C. A novel functional wrapping design by complexation of ε-polylysine with liposomes entrapping bioactive peptides. Food Bioproc. Tech. 2016; 9(7), 1113–1124.

30. Paunonen S. Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 2013; 8(2), 3098–3121.

31. Wang B., Jia D. Y., Ruan S. Q., Qin S. Structure and properties of collagen-konjac glucomannan-sodium alginate blend films. J. Appl. Polym. Sci. 2007; 106(1), 327–332.

32. Pagano C., Ceccarini M. R., Calarco P., Scuota S., Conte C. Primavilla S., Ricci M., Perioli L. Bioadhesive polymeric films based on usnic acid for burn wound treatment: Antibacterial and cytotoxicity studies. Colloids Surf. B: Biointerfaces 2019; 178, 488–499.

33. Akkaya N. E., Ergun C., Saygun A., Yesilcubuk N., Akel-Sadoglu N., Kavakli I. H., Turkmen H. S., Catalgil- Giz H. New biocompatible antibacterial wound dressing candidates; agar-locust bean gum and agar-salep films. Int. J. Biol. Macromol. 2020; 155, 430–438.

34. Choi J. C., Uyama H., Lee C. H., Sung, M. H. Promotion effects of ultra-high molecular weight poly-γ-glutamic acid on wound healing. J. Microbiol. Biotechnol. 2015; 25(6), 941–945.

35. Hinchliffe J. D., Parassini Madappura A., Syed Mohamed S. M. D., Roy I. Biomedical applications of bacteria- derived polymers. Polymers 2021; 13(7), 1081.

Labels
Pharmacy Clinical pharmacology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#