#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vaccines from the perspective of a pharmacist


Authors: Aleš Franc
Published in: Čes. slov. Farm., 2020; 69, 151-162
Category: Review Articles

Overview

The field of development, production and safety of vaccines has recently come under the public eye. The aim of this review article is not to provide comprehensive information on the development and production of vaccines, which would not be possible even in a limited space. Its purpose is to outline a brief overview of the principles, development, and production of basic types of vaccines and point out the benefits and risks from the perspective of a pharmacist. He can participate not only in basic research, but his role is mainly in the formulation of a dosage form, registration of a vaccine, its distribution, and educational activities towards the lay and professional public.

Keywords:

Safety


Sources

    1.  Vaccine. News Medical Life Sciences. https://www.news-medical.net/condition/Vaccine (15. 3. 2020).

    2.  Lollini P. L., Forni G. Antitumor vaccines: is it possible to prevent a tumor? Cancer Immunol. Immun. 2002; 51, 409–416.

    3.  Stanley A. P., Walter A. O. Paul A. O. Vaccines: Elsevier Health Sciences 2008.

    4.  Dao Z. History of Chinese martial arts: DeepLogic 1985.

    5.  Trebichaský I. Lži a mýty o očkování. Živa 2016; 3, LIII–LV.

    6.  Ong E., He Y., Yang Z. Epitope promiscuity and population coverage of Mycobacterium tuberculosis protein antigens in current subunit vaccines under development. Infect. Genet. Evo. I. 2020; 8, 104186.

    7.  Věda přináší neuvěřitelné množství překvapení. Zdravotnictví a medicína. https://zdravi.euro.cz/rozhovory/predstavujeme/445824 (27. 8. 2012).

    8.  Letos se budou proti vzteklině vakcinovat lišky naposled. Tisková zpráva. SVS ČR. https://www.svscr.cz/letos_se_budou_proti_vztekline (14. 1. 2009).

    9.  Goodchild L. Could dissolvable microneedles replace injected vaccines? Mater. Today 2015; 18, 419–420.

  10.  Giersing B. K., Vekemans J, Nava S, Kaslow D. C., Moorthy V. WHO Product development for Vaccines Advisory Committee. Vaccine 2019; 50, 7315–7327.

  11.  Petrová M. Očkování v České republice. Tempus medicorum – Farmakoterapeutické informace. Časopis ČLK 2015; 3–7.

  12.  Cheng D. R., Perrett K. P., Choo S., Danchin M., Buttery J. P., Crawford N. W. Pediatric anaphylactic adverse events following immunization in Victoria, Australia from 2007 to 2013. Vaccine 2015; 33, 1602–1607.

  13.  Minor P. D. Live attenuated vaccines: historical successes and current challenges. Virology 2015; 479, 379–392.

  14.  Fusek M., Káš J., Ruml T. Bioléčiva. Praha: Vydavatelství VŠCHT 2008.

  15.  Ronald W. E. New Vaccine Technologies. CRC Press 2001.

  16.  BCG vaccine: WHO position paper. WER 2004; 79, 25–40.

  17.  Introduction of inactivated poliovirus vaccine into oral poliovirus vaccine-using countries. WHO position paper. WER 2003; 78, 241–252.

  18.  Measles vaccines: WHO position paper. WER 2009; 35, 349–360.

  19.  Rotavirus vaccines: an update. WER 2009; 84, 533–538.

  20.  Yellow fever vaccine: WHO position paper. WER 2003; 78, 349–360.

  21.  Inactivated whole-cell (killed antigen) vaccines: types of vaccines and adverse reactions. WHO. https://vaccine-safety-training.org/inactivated-whole-cell-vaccines.html (15. 6. 2020).

  22.  Stauffer F., El-Bacha T., Da Poian A. T. Advances in the development of inactivated virus vaccines. Recent Pat. Antiinfect. Drug Discov. 2006; 291–296.

  23.  Piet M. P., Chin S., Prince A. M., Brotman B., Cundell A. M., Horowitz B. The use of tri(N-butyl)phosphate detergent mixtures to inactivate hepatitis viruses and human immunodeficiency virus in plasma and plasma‘s subsequent fractionation. Transfusion 1990; 30, 591–598.

  24.  Danihelkova H., Zavadova H. Disruption of influenza virus A by diethyl ether-Tween and tri-N-butyl phosphate-Tween mixtures. Acta Virol. 1984; 28, 26–32.

  25.  Gao X., Zhao D., Zhou P., Zhang L., Li M., Li W., Zhang Y., Wang Y., Liu X. Characterization, pathogenicity and protective efficacy of a cell culture-derived porcine deltacoronavirus. Virus research 2020; 2, 197955.

  26.  Pertussis vaccine: WHO position paper. WER 2005; 80, 29–40.

  27.  Introduction of inactivated poliovirus vaccine into oral poliovirus vaccine-using countries. WER 2003; 78, 241–252.

  28.  Palache A. M., Brands R., Scharrenburg G. V. Immunogenicity and reactogenicity of influenza subunit vaccines produced in MDCK cells or fertilized chicken eggs. J. Infect. Dis. 1997; 176 (Suppl 1), S20–S23.

  29.  Möller J., Kraner M. E., Burkovski A. Proteomics of Bordetella pertussis whole-cell and acellular vaccines. BMC Res. Notes 2019; 12, 329.

  30.  Hepatitis B vaccines: WHO position paper. WER 2009; 84, 405–420.

  31.  de Greeff S. C., Sanders E. A., de Melker H. E., van der Ende A., Vermeer P. E., Schouls L. M. Two pneumococcal vaccines: the 7-valent conjugate vaccine (Prevenar) for children up to the age of 5 years and the 23-valent polysaccharide vaccine (Pneumo 23) for the elderly and specific groups at risk. NTvG 2007; 151, 1454.

  32.  Haemophilus influenzae type b conjugate vaccines: WHO position paper. WER 2006; 81, 445–452.

  33.  Pneumococcal conjugate vaccine for childhood immunization: WHO position paper. WER 2007; 82, 93–104.

  34.  van de Witte S. V., Nauta J., Giezeman-Smits K. M., de Voogd J. M. Trivalent inactivated subunit influenza vaccine Influvac®: 30-year experience of safety and immunogenicity. Trials Vaccinol. 2012; 1, 42–48.

  35.  Beran J, Havlík J. Chřipka. Klinický obraz, prevence, léčba, 2. rozšířené vydání. Praha: Maxdorf 2005.

  36.  Even-Or O., Avniel-Polak, S., Barenholz Y., Nussbaum G. The cationic liposome CCS/C adjuvant induces immunity to influenza independently of the adaptor protein MyD88. Human Vaccines & Immunotherapeutics 2020; 1–9.

  37.  Spila-Alegiani S., Salmaso S., Rota M. C., Tozzi A. E., Raschetti R. Reactogenicity in the elderly of nine commercial influenza vaccines: results from the Italian SVEVA study. Vaccine 1999; 17, 1898–1904.

  38.  Broder K. R., Cortese M. M., Iskander J. K., Kretsinger K, Slade B. A., Brown K. H., Mijalski C. M., Tiwari T, Weston E. J., Cohn A. C., Srivastava P. U. Preventing tetanus, diphtheria, and pertussis among adolescents; use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 2006; 55, PR3.

  39.  Jones R. G., Liu, Y., Rigsby P., Sesardic D. An improved method for development of toxoid vaccines and antitoxins. J Immunol. Methods 2008; 337, 42–48.

  40.  Sato R., Fintan B. Effect of cash incentives on tetanus toxoid vaccination among rural Nigerian women: a randomized controlled trial. Hum. Vaccin Immunother. 2020; 16, 1181–1188.

  41.  Tetanus vaccine: WHO position paper. WER 2006; 81,197–208.

  42.  Diphtheria vaccine: WHO position paper. WER 2006; 81, 21–32.

  43.  Patzer E. J., Nakamura G. R., Hershberg R. D., Gregory T. J., Crowley C, Levinson A. D., Eichberg J. W. Cell culture derived recombinant HBsAg is highly immunogenic and protects chimpanzees from infection with hepatitis B virus. Bio/technology 1986; 7, 630–636.

  44.  Zhao Q., Wanga Y, Freedb D., Fub T. M., Gimeneza J. A., Sitrina R. D., Washabaugh M. W. Maturation of recombinant hepatitis B virus surface antigen particles. Hum. Vacc. 2006; 4, 174–180.

  45.  Kazi A, Ismail C. M., Amilda A. A., Chuah C, Leow C. H., Lim B. H., Singh K. K., Leow C. Y. Designing and evaluation of an antibody-targeted chimeric recombinant vaccine encoding Shigella flexneri outer membrane antigens. Infect. Genet. Evol. 2020; 7, 104176.

  46.  Hernández-Bernal F., Aguilar-Betancourt A., Aljovin V., Arias G., Valenzuela C., Perez de Alejo K., Hernández K., Oquendo O., Figueredo N., Figueroa N., Musacchio A. Comparison of four recombinant hepatitis B vaccines applied on an accelerated schedule in healthy adults. Human Vacc. 2011; 10, 1026–1036.

  47.  Cutts F. T., Franceschi S., Goldie S., Castellsague X. D., De Sanjose S., Garnett G., Markowitz, L. Human papillomavirus and HPV vaccines: a review. Bull. World Health. Organ. 2007; 85, 719–726.

  48.  Josefsberg J. O., Buckland B. Vaccine process technology. Biotechnol. Bioeng. 2012; 109, 1443–1460.

  49.  Li Y., Cao H., Dao, N., Luo Z., Yu H., Chen Y., Chen, X. High-throughput neuraminidase substrate specificity study of human and avian influenza A viruses. Virology 2011; 415, 12–19.

  50.  Ura T., Okuda K., Shimada M. Developments in viral vector-based vaccines. Vaccines 2014; 3, 624–641.

  51.  Sutter G., Staib C. Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr. Drug Targets Infect. Disord. 2003; 3, 263–271.

  52.  Shanmugaraj B., Priya L. B., Mahalakshmi B., Subbiah S., Hu, R. M., Velmurugan B. K., Baskaran, R. Bacterial and viral vectors as vaccine delivery vehicles for breast cancer therapy. Life Sci. 2020; 117550.

  53.  Srivastava I. K., Liu M. A. Gene vaccines. Ann. Intern. Med. 2003; 138, 550–559.

  54.  van Rompay K. K., Keesler R. I., Ardeshir A., Watanabe J., Usachenko J., Singapuri A., Cruzen C., Bliss-Moreau E., Murphy A. M., Yee JL, Webster H. DNA vaccination before conception protects Zika virus-exposed pregnant macaques against prolonged viremia and improves fetal outcomes. Sci. Transl. Med. 2019; 18, 523.

  55.  Felber B. K., Pavlakis G. N. HIV vaccine: better to start together? The Lancet HIV 2019; 11, e724–725.

  56.  Gaudinski M. R., Houser K. V., Morabito K. M, Hu Z., Yamshchikov G., Rothwell R. S., Berkowitz N., Mendoza F., Saunders J. G., Novik. L., Hendel C. S. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet 2018; 391, 552–562.

  57.  Salyaev R. K., Rekoslavskaya N. I. Plant-Based Peroral Vaccines. In Multifunctional Systems for Combined Delivery. Biosensing and Diagnostics 2017; 1, 193–210.

  58.  Streatfield S. J., Howard J. A. Plant-based vaccines. Int. J. Parasitol. Parasites 2003; 33, 479–493.

  59.  Chan H. T., Daniell H. Plant‐made oral vaccines against human infectious diseases – are we there yet? Plant Biotechnol. J. 2015; 13, 1056–1070.

  60.  Takeyama N., Kiyono H., Yuki Y. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Ther Adv Vaccines 2015; 3, 139–154.

  61.  Mak T. W., Saunders M. E., Jett B. D. Primer to the immune response: Academic Cell 2014.

  62.  Chackerian B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines 2007; 6, 381–390.

  63.  Fuenmayor J., Gòdia F., Cervera L. Production of virus-like particles for vaccines. New biotech. 2017; 39, 174–180.

  64.  Roldao A, Silva A. C., Mellado M. C., Alves P. M., Carrondo M. J. Viruses and virus-like particles in biotechnology: fundamentals and applications. Comprehensive biotechnology 2017; 1, 633–656.  

  65.  Ludwig C., Wagner R. Virus-like particles – universal molecular toolboxes. Curr. Opin. Biotechnol. 2007; 18, 537–545.

  66.  Skwarczynski M., Toth I. Micro-and nanotechnology in vaccine development: William Andrew 2016.

  67.  Cook I. F. Evidence based route of administration of vaccines. Hum. Vacc. 2008; 4, 67–73.

  68.  Sheets R. L. Opinion on adventitious agents testing for vaccines: Why do we worry so much about adventitious agents in vaccines? Vaccine 2013; 31, 2791–2795.

  69.  Thomassen Y. E., van Sprang E. N., van der Pol L. A., Bakker W. A. Multivariate data analysis on historical IPV production data for better process understanding and future improvements. Biotechnology and bioeng 2010; 107, 96–104.

  70.  Aiyer-Harini P, Ashok-Kumar H. G., Kumar G. P., Shivakumar N. An overview of immunologic adjuvants. J. Vaccines Vacci. 2013; 4, 1000167.

  71.  Goto N., Kato H., Maeyama J. I., Eto K, Yoshihara S. Studies on the toxicities of aluminium hydroxide and calcium phosphate as immunological adjuvants for vaccines. Vaccine 1993; 11, 914–918.

  72.  HogenEsch H. Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine 2002; 31, 34–39.

  73.  Petrovsky N., Cooper P. D. Carbohydrate-based immune adjuvants. Expert Rev Vaccines 2011; 10, 523–537.

  74.  Kino Y. Vaccine excipients. Nihon. Rinsho. 2008; 66, 1933–1937.

  75.  Excipients in vaccines per 0.5 mL dose. IVS. John Hoppkins Bluumberg School and Public. http://www.vaccinesafety.edu/components-Excipients.htm (15. 6. 2002).

  76.  Wiedermann-Schmidt U., Maurer W. Relevance of additives and adjuvants in vaccines for allergic and toxic side effects. Wien. Klin. Wochenschr. 2005; 117, 510–519.

  77.  Prausnitz M. R., Langer R. Transdermal drug delivery. Nature biotech. 2008; 26, 1261.

  78.  Toyoda M., Hama S, Ikeda Y, Nagasaki Y, Kogure K. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int. J. Pharm. 2015; 10, 110–114.

  79.  Quinn H. L., Kearney M. C., Courtenay A. J., McCrudden M. T., Donnelly R. F. The role of microneedles for drug and vaccine delivery. Expert Opin. Drug Deliv. 2014; 11, 1769–1780.

  80.  Mishra D., Dubey V., Asthana A., Saraf D. K., Jain N. K. Elastic liposomes mediated transcutaneous immunization against Hepatitis B. Vaccine 2006; 24, 4847–4855.

  81.  Gogoll K., Stein P., Lee K. D., Arnold P., Peters T., Schild H., Radsak M., Langguth P. Solid nanoemulsion as antigen and immunopotentiator carrier for transcutaneous immunization. Cell. Immunol. 2016; 308, 35–43.

  82.  Mahor S., Rawat A., Dubey P. K., Gupta P. N., Khatri K., Goyal A. K. Cationic Transfersomes based topical genetic vaccine against hepatitis B. Int. J. Pharm. 2007; 340: 13–19. 

  83.  Pielenhofer J., Sohl J., Windbergs M., Langguth P., Radsak M. P. Current progress in particle-based systems for transdermal vaccine delivery. Front. Immunol. 2020; 11, 266.

  84.  Nemes E., Geldenhuys H., Rozot V., Rutkowski K. T., Ratangee F., Bilek N., Mabwe S., Makhethe L., Erasmus M., Toefy A., Mulenga H. Prevention of M. tuberculosis infection with H4: IC31 vaccine or BCG revaccination. N. Engl. J. Med. 2018; 379,138–149.

  85.  Bragazzi N. L, Orsi A., Ansaldi F., Gasparini R., Icardi G. Fluzone® intra-dermal (Intanza®/Istivac® Intra-dermal): An updated overview. Hum. Vaccin Immunother. 2016; 12, 2616–2627.

  86.  Partidos C. D. Intranasal vaccines: forthcoming challenges. Pharm. Sci. Technol. Today 2000; 8, 273–281.

  87.  Davis S. S. Nasal vaccines. Adv. Drug Deliv. 2001; 51, 21–42.

  88.  Heurtault B., Frisch B., Pons F. Liposomes as delivery systems for nasal vaccination: strategies and outcomes. Expert Opin Drug Deliv. 2010; 7, 829–844.

  89.  Partidos C. D. Intranasal vaccines: forthcoming challenges. Pharm. Sci. Technol. Today 2000; 8, 273–2781.

  90.  Hu K. F., Lövgren-Bengtsson K., Morein B. Immunostimulating complexes (ISCOMs) for nasal vaccination. Adv. Drug Deliv. Rev. 2001; 51, 149–159.

  91.  Slütter B., Bal S, Keijzer C., Mallants R., Hagenaars N., Que I., Kaijzel E., van Eden W., Augustijns P., Löwik C., Bouwstra J. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 2010; 38, 6282–6291.

  92.  Vaccines licensed for use in the United States, FDA. https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states (15. 6. 2020).

  93.  Wright A. E. Notes on the treatment of furunculosis, sycosis, and acne by the inoculation of a staphylococcus vaccine: and generally on the treatment of localised bacterial invasions by therapeutic inoculations of the corresponding bacterial vaccines. Lancet 1902; 159: 874–884.

  94.  Bakker W. A., Thomassen Y. E., van’t Oever A. G, Westdijk J., van Oijen M. G., Sundermann L. C., van’t Veld P., Sleeman E., van Nimwegen F. W., Hamidi A, Kersten G. F. Inactivated polio vaccine development for technology transfer using attenuated Sabin poliovirus strains to shift from Salk-IPV to Sabin-IPV. Vaccine 2011; 41, 7188–7196.

  95.  Ramirez J. E., Sharpe L. A., Peppas N. A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 2017; 114, 116–131.

  96.  Arora R. Advances in niosome as a drug carrier: a review. Asian J. Pharm. 2016; 9, 29–39.

  97.  Gould-Fogerite S., Mannino R. J. Mucosal and systemic immunization using cochleate and liposome vaccines. J. Liposome Res. 1996; 2, 357–379.

  98.  Jain S., Khomane K. K., Jain A., Dani P. Nanocarriers for transmucosal vaccine delivery. Curr. Nanosci. 2011; 7, 160–177.

  99.  Ramirez J. E., Sharpe L. A., Peppas N. A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 2017; 15, 116–131.

100. Narasimhan B., Goodman J. T., Vela Ramirez J. E. Rational design of targeted next-generation carriers for drug and vaccine delivery. Annu. Rev. Biomed. Eng. 2016; 18, 25–49.

101. Zhu Q., Talton J., Zhang G., Cunningham T., Wang Z., Waters R. C., Kirk J, Eppler B., Klinman D. M., Sui Y, Gagnon S. Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nature Med. 2012; 18,1291–1296.

102. Marco I., Feyerabend F., Willumeit-Römer R., vVan der Biest O. Degradation testing of Mg alloys in Dulbecco’s modified eagle medium: Influence of medium sterilization. Mater. Sci. Eng. C. 2016; 62, 68–78.

103. Vogel F. R., Powell M. F. A compendium of vaccine adjuvants and excipients. Vaccine Design. Boston, MA: Springer 1995.

104. Rhee J. H. Current and New Approaches for Mucosal Vaccine Delivery. In Mucosal Vaccines. Academic Press 2020.

105. Mort M., Baleta A., Destefano F. Vaccine safety basics learning manual. WHO Press, Switzerland 2013.

106. Výroba léčivých přípravků biologického původu. Doplněk 2. SÚKL 2003. http://www.sukl.cz/leciva/doplnek-2

107. Mascola J. R., Fauci A. S. Novel vaccine technologies for the 21st century. Nat. Rev. Immunol. 2020; 2, 87–88.

108. Paules C. I., Sullivan S. G., Subbarao K., Fauci A. S. Chasing seasonal influenza – the need for a universal influenza vaccine. N. Engl. J. Med. 2018; 378, 7–9.

109. Hewajuli D. A., Dharmayanti N. I. Efficacy, mechanism and antiviral resistance of neuraminidase inhibitors and adamantane against avian influenza. ICARD 2019; 29, 61–74.

110.  Andrews, S. F., Graham, B. S., Mascola, J. R., McDermott, A. B. Is it possible to develop a “universal” influenza virus vaccine? Cold Spring Harbor Perspectives in Biology 2018; 10, a029413.

111.  Bloom, B. R. New promise for vaccines against tuberculosis. N. Engl. J. Med. 2018; 379, 1672–1674.

112.  Gursel M., Gursel I. Is global BCG vaccination coverage relevant to the progression of SARS-CoV-2 pandemic? Med. Hypotheses 2020; 6, 109707.

113.  Bohmwald K., Espinoza J. A., Pulgar R. A., Jara E. L., Kalergis A. M. Functional impairment of mononuclear phagocyte system by the human respiratory syncytial virus. Front. Immunol. 2017; 27, 1643.

114.  Crank M. C., Ruckwardt T. J., Chen M., Morabito K. M., Phung E., Costner P. J., Holman L. A., Hickman S. P., Berkowitz N. M., Gordon I. J., Yamshchikov G. V. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 2019; 6452, 505–509.

115.  Malaria, Key facts. WHO 14. January 2020. https://www.who.int/news-room/fact-sheets/detail/malaria

116.  New estimates of malaria deaths: concern and opportunity. Lancet 201; 9814, 385.

117.  Thera M. A., Plowe C. V. Vaccines for malaria: how close are we? Annu. Rev. Med. 2012; 63, 345–357.

118.  Global HIV & AIDS statistics - 2019 fact sheet, UNADIS. https://www.unaids.org/en/resources/fact-sheet (15. 6. 2009).

119.  Phillips M. A., Goldberg D. E. Toward a chemical vaccine for malaria. Science 2018; 6419, 1112–1118.

120. van Regenmortel M. H. HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design: A review of 20 years of research: Springer Nature 2019.

121. Eroshenko N., Gill T., Keaveney M. K., Church G. M., Trevejo J. M., Rajaniemi H. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures. Nature Biotech. 2020; 38, 789–791.

122. Gursel M., Gursel M. Is global BCG vaccination-induced trained immunity relevant to the progression of SARS-CoV-2 pandemic? Allergy 2020; 7, 1815–1819.

Labels
Pharmacy Clinical pharmacology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#