#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

NEUROTRANSMISSION IN VISUAL ANALYZER AND BIONIC EYE. A REVIEW


Authors: J. Lešták
Authors‘ workplace: Oční klinika JL Fakulty biomedicínského inženýrství ČVUT v Praze
Published in: Čes. a slov. Oftal., 77, 2021, No. 2, p. 55-59
Category: Review
doi: https://doi.org/10.31348/2020/28

Overview

Aims: The aim of the work is to point out the transmission of electrical voltage changes in the visual analyser and thus the efficiency of the bionic eye.

Material and methods: The review deals with the question of the transmission of electrical changes in visual path voltage under physiological and pathological conditions. In particular, it points to feedback autoregulatory damage not only of primarily altered cellular structures, but of all other, both horizontally and vertically localized. Based on the results of functional magnetic resonance imaging and electrophysiological methods, it shows the pathology of the entire visual pathway in three eye diseases: retinitis pigmentosa, age-related macular degeneration and glaucoma.

Results: The thesis also provides an overview of possible systems that are used to replace lost vision, from epiretinal, subretinal, suprachoroidal implants, through stimulation of the optic nerve, corpus geniculatum laterale to the visual cortex.

Conclusion: Due to the pathology of neurotransmission, bionic eye systems cannot be expected to be restored after stabilization of binocular functions.

Keywords:

neurotransmission – retinitis pigmentosa – age related macular degeneration – bionic eye


Sources

1.      Šín M, Rehák M, Chrapek O, Řehák J. Současné možnosti náhrady vidění nevidomých pacientů pomocí arteficiálních neuroprotéz. [Contemporary possibilities of artificial vision in blind patients using artificial neuro-prosthesis-review]. Cesk Slov Oftalmol. 2011;67:3-6. Czech.

  2.    Langrová H, Kratochvílová V. Nové možnosti léčby vrozených chorob sítnice. [New methods of the treatment of retinal dystrophies]. Cesk Slov Oftalmol. 2013;69:106-109. Czech.

  3.    Straňák Z, Kousal B, Ardan T, Veith M. Innovate strategies for treating retinal diseases. Cesk Slov Oftalmol. 2019;75:287-295. Available from: http://www.cs-ophthalmology.cz/cs/journal/articles/135. doi: 10.31348/2019/6/1

  4.    Kiser PD, Golczak M, Maeda A, Palczewski K. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim Biophys Acta. 2012;1821:137-151.

  5.    Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL. The time course of glutamate in the synaptic cleft. Science 1992;258:1498-1501.

  6.    Kew JN, Kemp JA. Ionotropic and Metabotropic Glutamate Receptor Structure and Pharmacology. Psychopharmacology. 2005;179:4-29.

  7.    Shen Y, Liu XL, Yang XL. N-methyl-D-aspartate receptors in the retina. Mol Neurobiol. 2006;34:163-179.

  8.    Olney JW., Sharpe LG. Brain Lesions in an Infant Rhesus Monkey Treated with Monsodium Glutamate, Science (New York, N.Y.) 1969;166(3903):386-388.

  9.    Rothstein JD, Martin L, Levey AI. et al. Localization of neuronal and glial glutamate transporters. Neuron. 1994;13:713-725.

10.    Amara SG, Fontana AC. Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int. 2002;41:313-318.

11.    Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1-105.

12.    Huang YH, Bergles DE. Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol. 2004;14:346-352.

13.    Lestak J, Fus M. Neuroprotection in glaucomaelectrophysiology (Review). Experimental and Therapeutic Medicine. 2020;19:2401-2405.

14.    Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol. 2000;84:303-310.

15.    Naskar R, Wissing M, Thanos S. Detection of Early Neuron Degeneration and Accompanying Microglial Responses in the Retina of a Rat Model of Glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2962-2968.

16.    Shou T, Liu J, Wang W, Zhou Y, Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci. 2003;44: 3005-3010.

17.    Soto I, Oglesby E, Buckingham BP. et al. Retinal Ganglion Cells Downregulate Gene Expression and Lose Their Axons within the Optic Nerve Head in a Mouse Glaucoma Model. J Neurosci. 2008;28:548-561.

18.    Shou T, Liu J, Wang W, Zhou Y, Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci. 2003; 44:3005-3010.

19.    Sherman SM, Guillery RW. Exploring the Thalamus and Its Role in Cortical Function. 2nd Ed MIT Press; Boston: 2006.

20.    Briggs F, Usrey WM. Corticogeniculate feedback and parallel processing in the primate visual system. J Physiol. 2011;589:33-40.

21.    Thompson AD, Picard N, Min L, Fagiolini M, Chen C. Cortical Feedback Regulates Feedforward Retinogeniculate Refinement. Neuron. 2016;91:1021-1033.

22.    Vorwerk CK, Gorla MS, Dreyer EB. An experimental basis for implicating excitotoxicity in glaucomatous optic neuropathy. Survey of Ophthalmology,1999;43:142-150.

23.    Woldemussie E, Wijono M, Ruiz G. Muller cell response to laser-induced increase in intraocular pressure in rats. Glia. 2004;47:109-119.

24.     Grewer C, Gameiro A, Zhang Z, Zhen T, Braams S, Rauen T. Glutamate forward and reverrse transport: from molecular mechanism to transporter-mediated release after ischemiea. IUBMB Life. 2008;60:609-619.

25.    Pavlidis M, Stupp T, Naskar R, Cengiz C, Thanos S. Retinal Ganglion Cells Resistant to Advanced Glaucoma: A Postmortem Study of Human Retinas with the Carbocyanine Dye DiI. Invest Ophthalmol Vis Sci. 2003;44:5196-5205.

26.    Dong X, Wanf Y, Qin Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. 2009;30:379-387.

27.    Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988;8:185-196.

28.    Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett. 2004;149:19-23.

29.    Beal M, Hyman B, Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neu- rodegenerative diseases? Trends Neurosci. 1993;16:125-131.

30.    Turski L, Turski W. Towards an understanding of the role of glutamate in neurodegenerative disorders: Energy metabolism and neuropathology. Experientia. 1993; 49:1064-1072.

31.    Rossi D, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;403:316-321.

32.    Sapolsky RM. The Possibility of Neurotoxicity in the Hippocampus in Major Depression: A Primer on Neuron Death. Biol Psychiatry. 2000;48:755-765.

33.    Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11:682-696.

34.    Kyncl M, Lestak J, Tintera J, Haninec P: Traumatic optic neuropathy – a contralateral finding (case report). Experimental and Therapeutic Medicine. 2019;17:4244-4248.

35.    Lestak J, Haninec P, Kyncl M, Tintera J. Optic nerve sheath meningioma-findings in the contralateral optic nerve tract: a case report. Molecular and Clinical Oncology. 2020;12:411-414.

36.    Lestak J, Kalvodova B, Karel I, Tintera J. Functional magnetic resonance imaging following epimacular and internal limiting membrane peeling – ipsilateral and contralateral finding. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020, 164, doi: 10.5507/bp.2019.044

37.    Zrenner E, Bartz-Schmidt KU, Benav H. et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc B. 2011;278:1489-1497.

38.    Bloome MA, Garcia ChA, Manual of retinal and choroidal dystrophies. Appleton-Century-Crofts New York, 1981, p. 129, ISBN-10: 0838561268.

39.    Ohno N, Murai H, Suzuki Y. et al. Alteration of the optic radiations using diffusiontensor MRI in patients with retinitis pigmentosa. Br J Ophthalmol. 2015;99:10514. doi: 10.1136/bjophthalmol2014305809

40.    Schoth F, Burgel U, Dorsch R, Reinges MH, Krings T. Diffusion tensor imaging in acquired blind humans. Neurosci Lett. 2006;398:178-182.

41.    Lestak J, Zahlava J, Tintera J, Jiraskova N, Navratil L. FMRI in a patient with pigmentary retinal dystrophy. Case report. Wulfenia J. 2016;23:338-346.

42.    Lestak J, Kyncl M, Tintera J. Bionic Eye and Retinitis Pigmentosa. Biomed J Sci & Tech Res. 2019;19:14347-14348.

43.    Medeiros NE, Curcio CA. Preservation of ganglion cell layer neurons in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2001;42:795-803.

44.    Lestak J, Tintera J, Karel I, Svata Z, Rozsival P: FMRI in Patients with Wet Form of Age-Related Macular Degeneration. Neuro-Ophthalmology. 2013;37:192-197.

45.    Lešták J, Tintěra J. Funkční magnetická rezonance u vybraných očních onemocnění. Cesk Slov Oftalmol. 2015;71:127–133. Czech.

46.    Lestak J, Tintera J, Svata Z, Ettler L, Rozsival P.: Glaucoma and CNS. Comparison of fMRI results in high tension and normal tension glaucoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158:144-153.

47.    Lestak J, Jiraskova N, Zakova M, Stredova M: Normotensive glaucoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162:272-275.

48.    Bloch E, Luo Y, Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol. 2019;11: doi: 10.1177/2515841418817501.

49.    Philip M, Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: A review with a focus on cortical visual prostheses. Brain Research. 2015;1595:51-73.

50.    Nguyen TN, Tangutooru SM, Rountree CM, et. al. Thalamic visual prosthesis.Transact Biomed Enginner. 2016;63:1573-1850.

51.    Pouratian N. The visual cortical prosthesis system provided some functional vision to blind patients in a 12-month assessment of the device. Ophthalmology Times. 2020; January 23, Available from: https://www.ophthalmologytimes.com/retina/prosthesis-system-may-help-blind-patients-see-again

Labels
Ophthalmology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#