#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Options for Activation of Plastic and Adaptation Processes in the Central Nervous System using Physiotherapy in Multiple Sclerosis Patients


Authors: K. Řasová 1;  M. Procházková 1;  I. Ibrahim 2;  J. Hlinka 3,4;  J. Tintěra 2
Authors‘ workplace: Klinika rehabilitačního lékařství 3. LF UK a FN Královské Vinohrady, Praha 1;  Pracoviště radiodiagnostiky a intervenční radiologie, IKEM, Praha 2;  Národní ústav duševního zdraví, Klecany 3;  Ústav informatiky, AV ČR, v. v. i., Praha 4
Published in: Cesk Slov Neurol N 2017; 80/113(2): 150-156
Category: Review Article
doi: https://doi.org/10.14735/amcsnn2017150

Podporováno projektem PRVOUK P34, 260277/ SVV/ 2016, IKEM IN 00023001, GA13-23940.

Overview

The incidence of multiple sclerosis world-wide and in the Czech Republic continues to rise. It is one of the most common diseases that disables young people and excludes them from work as well as social life. Pharmacotherapy of this disease is insufficient to suppress progression. A comprehensive approach including physiotherapy is needed to reduce the symptoms of this disease. Current research aims to identify options for the most effective use of physiotherapy in the treatment of multiple sclerosis and is exploring the ways to actively and purposefully influence plastic and adaptive processes of the central nervous system. We discuss this theme in the present review article. We summarize the issue of neuroplasticity in general (and specifically in multiple sclerosis) and discuss the options for displaying plastic and adaptation processes (using functional magnetic resonance imaging in particular). Furthermore, we mention current physiotherapy approaches for multiple sclerosis and their potential impact on neuroplasticity. We summarize the results of our own research that monitors (via various imaging methods) the effect of the Motor Programs Activating Therapy, a new facilitation physiotherapy approach.

Key words:
physiotherapy techniques – central nervous system – neuroplasticity – functional magnetic resonance imaging – diffusion tensor imaging – multiple sclerosis – Motor programs activating therapy

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Flachenecker P. Autoim­mune diseases and rehabilitation. Autoim­mun Rev 2012;11(3):219– 25. doi: 10.1016/ j.autrev.2011.05.016.

2. Dalgas U, Ingeman­n-Hansen T, Stenager E. Physical Exercise and MS Recom­mendations. Int MS J 2009; 16(1):5– 11.

3. Khan F, Pal­lant JF, Zhang N, et al. Clinical practice improvement approach in multiple sclerosis rehabilitation: a pilot study. Int J Rehabil Res 2010;33(3):238– 47. doi: 10.1097/ MRR.0b013e328338b05f.

4. Lipp I, Tomas­sini V. Neuroplasticity and motor rehabilitation in multiple sclerosis. Front Neurol 2015;18(6):59. doi: 10.3389/ fneur.2015.00059.

5. Griesbach GS, Hovda DA. Cel­lular and molecular neuronal plasticity. Handb Clin Neurol 2015;128:681– 90. doi: 10.1016/ B978-0-444-63521-1.00042-X.

6. Waxman SG. Multiple sclerosis as a neuronal disease. Amsterdam: Elsevier 2005.

7. Cifel­li A, Matthews PM. Cerebral plasticity in multiple sclerosis: insights from fMRI. Mult Scler 2002;8(3):193– 9.

8. Rakús A. Neuroplasticita. Neurol Praxi 2009;10(2):83– 5.

9. Taláb R. Demyelinizační onemocnění CNS se zaměřením na roztroušenou sklerózu –  mezioborový pohled. Postgrad Med 2012;14(9):939– 49.

10. Hem­mer B, Archelos JJ, Hartung HP. New concepts in the im­munopathogenesis of multiple sclerosis. Nat Rev Neurosci 2002;3(4):291– 301.

11. Řasová K, Havrdová E. Rehabilitace u roztroušené sklerózy mozkomíšní. Neurol Praxi 2005;6(6):306– 9.

12. Pel­letier J, Audoin B, Reuter F, et al. Plasticity in MS: from functional imag­ing to rehabilitation. Int MS J 2009;16(1):26– 31.

13. Reddy H, Narayanan S, Matthews PM, et al. Relat­ing axonal injury to functional recovery in MS. Neurology 2000;54(1):236– 9.

14. Pantano P, Mainero C, Lenzi D, et al. A longitudinal fMRI study on motor activity in patients with multiple sclerosis. Brain 2005;128(9):2146– 53.

15. Mezzapesa DM, Rocca MA, Rodegher M, et al. Functional cortical changes of the sensorimotor network are as­sociated with clinical recovery in multiple sclerosis. Hum Brain Mapp 2008;29(5):562– 73.

16. Tomas­sini V, Johansen-Berg H, Jbabdi S, et al. Relat­ing brain damage to brain plasticity in patients with multiple sclerosis. Neurorehabil Neural Repair 2012;26(6):581– 93. doi: 10.1177/ 1545968311433208.

17. Tomas­sini V, Johansen-Berg H, Leonardi L, et al. Preservation of motor skill learn­ing in patients with multiple sclerosis. Mult Scler 2011;17(1):103– 15. doi: 10.1177/ 1352458510381257.

18. Ibrahim I, Tintera J, Skoch A, et al. Fractional anisotropy and mean dif­fusivity in the corpus cal­losum of patients with multiple sclerosis: the ef­fect of physiotherapy. Neuroradiology 2011;53(11):917– 26. doi: 10.1007/ s00234-011-0879-6.

19. Rasova K, Prochazkova M, Tintera J, et al. Motor program­me activat­ing therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study. Int J Rehabil Res 2015;38(1):49– 54. doi: 10.1097/ MRR.0000000000000090.

20. Bonzano L, Tacchino A, Brichetto G, et al. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. Neuroimage 2014;90:107– 16. doi: 10.1016/ j.neuroimage.2013.12.025.

21. Prosperini L, Fanel­li F, Petsas N, et al. Multiple sclerosis: changes in microarchitecture of white matter tracts after train­ing with a video game balance board. Radiology 2014;273(2):529– 38. doi: 10.1148/ radiol.14140168.

22. Schoonheim MM, Geurts JJ, Barkhof F. The limits of functional reorganization in multiple sclerosis. Neurology 2010;74(16):1246– 7. doi: 10.1212/ WNL.0b013e3181db9957.

23. Mesaros S, Rocca MA, Kacar K, et al. Dif­fusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology 2012;78(13):969– 75. doi: 10.1212/ WNL.0b013e31824d5859.

24. Filippi M, Charil A, Rovaris M, et al. Insights from magnetic resonance imaging. Handb Clin Neurol 2014;122:115– 49. doi: 10.1016/ B978-0-444-52001-2.00006-6.

25. Ibrahim I, Tintěra J. Teoretické základy pokročilých metod magnetické rezonance na poli neurověd. Ces Radiol 2013;67(1):9– 19.

26. Hluštík P, Horák D, Herzig R, et al. Funkční zobrazování mozku pomocí magnetické rezonance v neurologii. Neurol Praxi 2008;9(2):83– 6.

27. Pen­ner IK, Opwis K, Kappos L. Relation between functional brain imaging, cognitive impairment and cognitive rehabilitation in patients with multiple sclerosis. J Neurol 2007;254 (Suppl 2):Ii53– 7.

28. Pantano P, Ian­netti GD, Caramia F, et al. Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 2002;125(7):1607– 15.

29. Saini S, DeStefano N, Smith S, et al. Altered cerebel­lar functional con­nectivity mediates potential adaptive plasticity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2004;75(6):840– 6.

30. Weil­ler C, May A, Sach M, et al. Role of functional imag­ing in neurological disorders. J Magn Reson Imag­ing 2006;23(6):840– 50.

31. Rybníčková M. Porovnání efektu terapií u nemocných s roztroušenou sklerózou mozkomíšní pomocí funkční magnetické rezonance. Praha, 2012. Diplomová práce. FTVS UK. Vedoucí práce Kamila Řasová.

32. Sidaros A, Engberg AW, Sidaros K, et al. Dif­fusion tensor imag­ing dur­ing recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain 2008;131(2):559– 72.

33. Elias­sen JC, Boespflug EL, Lamy M, et al. Brain--mapp­ing techniques for evaluat­ing poststroke recovery and rehabilitation: a review. Top Stroke Rehabil 2008;15(5):427– 50. doi: 10.1310/ tsr1505-427.

34. Luccichenti G, Sabatini U. Colour­ing rehabilitation with functional neuroimaging. Funct Neurol 2009;24(4):189– 93.

35. Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 2002;15(3):239– 45.

36. Dobkin BH. Neurobio­logy of rehabilitation. Ann N Y Acad Sci 2004;1038:148– 70.

37. Matthews PM, Johansen-Berg H, Reddy H. Non-invasive mapp­ing of brain functions and brain recovery: apply­ing les­sons from cognitive neuroscience to neurorehabilitation. Restor Neurol Neurosci 2004;22(3– 5):245– 60.

38. Merzenich MM, Sameshima K. Cortical plasticity and memory. Curr Opin Neurobio­l 1993;3(2):187– 96.

39. Di Filippo M, Picconi B, Tantucci M, et al. Short-term and long-term plasticity at corticostriatal synapses: implications for learn­ing and memory. Behav BrainRes 2009;199(1):108– 18. doi: 10.1016/ j.bbr.2008.09.025.

40. Daoudal G, Deban­ne D. Long-term plasticity of intrinsic excitability: learn­ing rules and mechanisms. Learn Mem 2003;10(6):456– 65.

41. Niemann J, Winker T, Gerl­ing J, et al. Changes of slow cortical negative DC-potentials dur­ing the acquisition of a complex finger motor task. Exp Brain Res 1991;85(2):417– 22.

42. Colcombe SJ, Erickson KI, Scalf PE, et al. Aerobic exercise train­ing increases brain volume in ag­ing humans. J Gerontol A Biol Scie Med Sci 2006;61(11):1166– 70.

43. Colcombe SJ, Erickson KI, Raz N, et al. Aerobic fitness reduces brain tis­sue loss in ag­ing humans. J Gerontol A Biol Scie Med Sci 2003;58(2):176– 80.

44. Gondoh Y, Sensui H, Kinomura S, et al. Ef­fects of aerobic exercise train­ing on brain structure and psychological wel­l-be­ing in young adults. J Sports Med Phys Fitness 2009;49(2):129– 35.

45. Prakash RS, Snook EM, Erickson KI, et al. Cardiorespiratory fitnes­s: a predictor of cortical plasticity in multiple sclerosis. Neuroimage 2007;34(3):1238– 44.

46. Rensink M, Schuurmans M, Lindeman E, et al. Task-oriented train­ing in rehabilitation after stroke: systematic review. J Adv Nurs 2009;65(4):737– 54. doi: 10.1111/ j.1365-2648.2008.04925.x.

47. Edgerton VR, Courtine G, Gerasimenko YP, et al. Train­ing locomotor networks. Brain Res Rev 2008;57(1):241– 54.

48. Edgerton VR, Roy RR. Activity-dependent plasticity of spinal locomotion: implications for sensory proces­sing. Exerc Sport Sci Rev 2009;37(4):171– 8. doi: 10.1097/ JES.0b013e3181b7b932.

49. Liepert J, Bauder H, Wolfgang HR, et al. Treatment-induced cortical reorganization after stroke in humans. Stroke 2000;31(6):1210– 6.

50. Yen CL, Wang RY, Liao KK, et al. Gait train­ing induced change in corticomotor excitability in patients with chronic stroke. Neurorehabil Neural Repair 2008;22(1):22– 30.

51. Morgen K, Kadom N, Sawaki L, et al. Training-dependent plasticity in patients with multiple sclerosis. Brain 2004;127(11):2506– 17.

52. Vojta V, An­negret P. Vojtův princip. Praha: Grada 2010.

53. Frank C, Kobesova A, Kolar P. Dynamic neuromuscular stabilization & sports rehabilitation. Int J Sports Phys Ther 2013;8(1):62– 73.

54. Čápová J. Terapeutický koncept „Bazální programy a podprogramy“. Ostrava: Repronis 2008.

55. Fais­sner A, Kettenmann H, Trotter J. A critical reviewof contemporary therapies. Comprehensive HumanPhysiology In: Greger R, Windhorst U, eds. Comprehensive Human Physiology. Berlin: Springer-Verlag 1996: 96– 108.

56. Kolar P, Sulc J, Kyncl M, et al. Stabiliz­ing function of the diaphragm: dynamic MRI and synchronized spirometric as­ses­sment. J Appl Physiol 2010;109(4):1064– 71. doi: 10.1152/ japplphysiol.01216.2009.

57. Vele F, Cumpelik J. Yoga-based train­ing for spinal stability. In: Liebenson C, ed. Rehabilitation of the spine: a practitioner’s manual. 2nd ed. London: Lippincott Wil­liams & Wilkins 2007:566– 84.

58. Véle F. Kineziologie pro klinickou praxi. Praha: Grada 1997.

59. Řasová K, Hogenová A. Kulturní a filozofické rozdíly v Evropě se odrážejí v rehabilitační léčbě (fyzioterapii) neurologicky nemocných II. Rehabil Fyz Lek 2013;20(3):168– 72.

60. Rasova K, Brandejsky P, Tintera J, et al. Bimanuální sekvenční motorická úloha u roztroušené sklerózy mozkomíšní v obraze funkční magnetické rezonance: vliv fyzioterapeutických technik –  pilotní studie. Cesk Slov Neurol N 2009;72(4):350– 8.

61. Rasova K, Krasensky J, Havrdova E, et al. Is it pos­sible to actively and purposely make use of plasticity and adaptability in the neurorehabilitation treatment of multiple sclerosis patients? A pilot project. Clin Rehabil 2005;19(2):170– 81.

62. Small SL, Noll DC, Genovese C, et al. Cerebel­lar hemispheric activation ipsilateral to the paretic hand cor­relates with functional recovery after stroke. Brain 2002;125(7):1544– 57.

63. Leonard C. The neuroscience of motor learning. In: Leonard C, ed. The neuroscience of human movement. St. Louis: Mosby 1998:203– 29.

64. Baron JC, Cohen LG, Cramer SC, et al. Neuroimag­ing in stroke recovery: a position paper from the First International Workshop on Neuroimag­ing and Stroke Recovery. Cerebrovasc Dis 2004;18(3):260– 7.

65. Las­sonde M, Sauerwein HC, Lepore F. Extent and limits of cal­losal plasticity: presence of discon­nection symp­toms in cal­losal agenesis. Neuropsychologia 1995;33(8):989– 1007.

66. Manson SC, Palace J, Frank JA, et al. Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus cal­losum atrophy. Exp Brain Res 2006;174(4):728– 33.

67. Cader S, Cifel­li A, Abu-Omar Y, et al. Reduced brain functional reserve and altered functional con­nectivity in patients with multiple sclerosis. Brain 2006;129(2):527– 37.

68. Pel­letier J, Habib M, Lyon-Caen O, et al. Functional and magnetic resonance imag­ing cor­relates of cal­losal involvement in multiple sclerosis. Arch Neurol 1993;50(10):1077– 82.

69. Pel­letier J, Suchet L, Witjas T, et al. A longitudinal study of cal­losal atrophy and interhemispheric dysfunction in relapsing-remitt­ing multiple sclerosis. Arch Neurol 2001;58(1):105– 11.

70. Cader S, Palace J, Matthews PM. Cholinergic agonism alters cognitive proces­s­ing and enhances brain functional con­nectivity in patients with multiple sclerosis. J Psychopharmacol 2009;23(6):686– 96.

71. Erickson KI, Colcombe SJ, Wadhwa R, et al. Training-induced plasticity in older adults: ef­fects of train­ing on hemispheric asym­metry. Neurobio­l Ag­ing 2007;28(2):272– 83.

72. Erickson KI, Colcombe SJ, Wadhwa R, et al. Train­ing-induced functional activation changes in dual-task proces­sing: an FMRI study. Cereb Cortex 2007;17(1):192– 204.

73. Aramaki Y, Honda M, Sadato N. Suppres­sion of the non-dominant motor cortex dur­ing bimanual sym­metric finger movement: a functional magnetic resonance imag­ing study. Neuroscience 2006;141(4):2147– 53.

74. Rosazza C, Minati L. Resting-state brain networks: literature review and clinical applications. Neurol Sci 2011;32(5):773– 85. doi: 10.1007/ s10072-011-0636-y.

75. Ramnani N, Behrens TE, Pen­ny W, et al. New approaches for explor­ing anatomical and functional con­nectivity in the human brain. Biol Psychiatry 2004;56(9):613– 9.

76. Friston KJ, Har­rison L, Pen­ny W. Dynamic causal model­ling. Neuroimage 2003;19(4):1273– 302.

77. Rybníčková M. Porovnání efektu terapií u nemocných s roztroušenou sklerozou mozkomíšní pomocí funkční magnetické rezonance. Praha, 2015. Autoreferát dizertační práce. 3. LF UK. Vedoucí práce Kamila Řasová.

78. Leavitt VM, Wylie G, Genova HM, et al. Altered ef­fective con­nectivity dur­ing performance of an information proces­s­ing speed task in multiple sclerosis. Mult Scler 2012;18(4):409– 17. doi: 10.1177/ 1352458511423651.

79. Finke C, Schlicht­ing J, Papazoglou S, et al. Altered basal ganglia functional con­nectivity in multiple sclerosis patients with fatigue. Mult Scler 2014;21(7):925– 34. doi: 10.1177/ 1352458514555784.

80. Lenzi D, Conte A, Mainero C, et al. Ef­fect of corpus cal­losum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapp 2007;28(7):636– 44.

81. Evangelou N, Konz D, Esiri MM, et al. Regional axonal loss in the corpus cal­losum cor­relates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 2000;123(9):1845– 9.

82. Ge Y, Law M, Gros­sman RI. Applications of dif­fusion tensor MR imag­ing in multiple sclerosis. Ann N Y Acad Sci 2005;1064:202– 19.

83. Roosendaal SD, Geurts JJ, Vrenken H, et al. Regional DTI dif­ferences in multiple sclerosis patients. Neuroimage 2009;44(4):1397– 403. doi: 10.1016/ j.neuroimage.2008.10.026.

84. Cas­sol E, Ranjeva JP, Ibar­rola D, et al. Dif­fusion tensor imag­ing in multiple sclerosis: a tool for monitor­ing changes in normal-appear­ing white matter. Mult Scler 2004;10(2):188– 96.

85. Song SK, Yoshino J, Le TQ, et al. Demyelination increases radial dif­fusivity in corpus cal­losum of mouse brain. Neuroimage 2005;26(1):132– 40.

86. Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) dif­fusion of water. Neuroimage 2002;17(3):1429– 36.

87. Hlinka J, Alexakis C, Hardman JG, et al. Is sedation-induced BOLD fMRI low-frequency fluctuation increase mediated by increased motion? MAGMA 2010;23:367– 74.

88. L­ing J, Merideth F, Caprihan A, et al. Head injury or head motion? As­ses­sment and quantification of motion artifacts in dif­fusion tensor imag­ing studies. Hum Brain Mapp 2012;33(1):50– 62.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 2

2017 Issue 2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#