Secondary Osteoporosis
Authors:
Horák Pavel
Authors‘ workplace:
III. interní klinika nefrologická, revmatologická a endokrinologická, FN Olomouc a LF Uni-verzity Palackého v Olomouci
Published in:
Clinical Osteology 2025; 30(1): 54-60
Category:
Overview
Osteoporosis is a major public health problem. Although postmenopausal and involutional osteoporosis are the most common forms, secondary causes account for up to 30 % of osteoporosis in postmenopausal women, 50 % of premenopausal osteoporosis, and 80 % of osteoporosis in men. Causes of secondary osteoporosis include lifestyle and nutritional factors, diseases that contribute to the development of bone metabolic disorders, and iatrogenic causes related to pharmacological or nonpharmacological interventions for various conditions. The need for screening for secondary causes of osteoporosis depends on the severity of osteoporosis, the absence of obvious clinical risk factors, and the patient’s age <50 years. Diagnosis of the etiology of osteoporosis may require extensive laboratory or advanced imaging studies. In individuals older than 40 years, the FRAX index can be used to assess fracture risk. Bone mineral density measurement is a valuable diagnostic method, given its interpretative limitations in some situations, for example, glucocorticoid-induced bone loss, obesity or type II diabetes mellitus. The clinical diagnosis of osteoporosis can only be established based on a differential diagnostic examination and after excluding other metabolic or tumour osteopathies. Effective treatment of the primary disease contributes significantly to the treatment of secondary osteoporosis. The basis of non-pharmacological treatment are general measures including lifestyle modification, nutrition and physical activity, correction of vitamin D deficiency and calcium intake. Antiresorptive or osteoanabolic pharmacotherapy should be individualised according to age, gender, fracture risk, comorbidities and available evidence for the specific form of secondary osteoporosis.
Keywords:
osteoporosis, secondary causes, fracture, diagnosis, therapy
Sources
1. Hudec SM, Camacho PM. Secondary causes of osteoporosis. Endocr Pract. 2013;19(1):120-128.
2. Stěpán JJ. Sekundární osteoporóza a její terapie. Remedia. 2017;27:15-21.
3. Rosa J, Blahoš J, Bayer M, et al. Osteoporóza u mužů. Stanovisko Společnosti pro metabolická onemocnění skeletu ČLS JEP. Osteologický Bull. 2016;21:42-48.
4. Mirza F, Canalis E. Management of endocrine disease: Secondary osteoporosis: pathophysiology and management. Eur J Endocrinol. 2015;173(3):131-151.
5. van Staa TP, Leufkens HG, Abenhaim L, et al. Use of oral corticosteroids in the United Kingdom. QJM. 2000;93(2):105-111.
6. Walsh LJ, Wong CA, Pringle M, et al. Use of oral corticosteroids in the community and the prevention of secondary osteoporosis: a cross sectional study. BMJ. 1996;313:344-346.
7. Bénard-Laribière A, Pariente A, Pambrun E, et al. Prevalence and prescription patterns of oral glucocorticoids in adults: a retrospective cross-sectional and cohort analysis in France. BMJ Open. 2017;7(7):e015905. doi: 10.1136/bmjopen-201.
8. Van Staa TP, Laan RF, Barton IP, et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 2003;48(11):3224-3229.
9. Cohen S, Levy RM, Keller M et al. Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 1999;42:2309-2318.
10. Buckley L, Guyatt G, Fink HA, et al. American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Care Res (Hoboken). 2017;69(8):1095-1110.
11. ElSayed NA, Aleppo G, Bannuru RR, et al. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes-2024. Diabetes Care. 2024;47(1):52-76.
12. Yamamoto M. Insights into bone fragility in diabetes: the crucial role of bone quality on skeletal strength (Review). Endocrine J. 2015;62(4):299-308.
13. Ebeling PR, Nguyen HH, Aleksova J, et al. Secondary Osteoporosis. Endocr Rev. 2022;43(2):240-313.
14. Blum MR, Bauer DC, Collet TH, et al. Thyroid Studies Collaboration. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA. 2015;313(20):2055-2065.
15. Takedani K, Notsu M, Yamauchi M, et al. Graves’ disease and vertebral fracture: possible pathogenic link in postmenopausal women. Clin Endocrinol (Oxf). 2020;93(2):204-211.
16. Tuck SP, Francis RM. Testosterone, bone and osteoporosis. Front Horm Res. 2009;37:123-132.
17. Van Poznak C, Taxel P. Skeletal complications of breast and prostate cancer therapies- In: Biilezikian JP (ed.). Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 9th Edition. Willey Blackwell, Hoboken. 2019;775-780.
18. Amir E, Seruga B, Niraula S, et al. Toxicity of adjuvant endocrine therapy in postmenopausal breast cancer patients: a systematic review and meta-analysis. J Natl Cancer Inst. 2011;103(17):1299-309.
19. Alibhai SM, Duong-Hua M, Cheung AM, et al. Fracture types and risk factors in men with prostate cancer on androgen deprivation therapy: a matched cohort study of 19,079 men. J Urol. 2010;184(3):918-23.
20. Chen Z, Maricic M, Bassford TL, et al. Fracture risk among breast cancer survivors: results from the Women’s Health Initiative Observational Study. Arch Intern Med. 2005;165(5):552-558.
21. Wang Y, Zhao R, Gu Z, et al. Effects of glucocorticoids on osteoporosis in rheumatoid arthritis:a systematic review and meta-analysis. Osteoporos Int. 2020;31(8):1401-1409.
22. Xue AL, Wu SY, Jiang L, et al. Bone fracture risk in patients with rheumatoid arthritis: a meta-analysis. Medicine (Baltimore). 2017;96(36):e6983.
23. Pray C, Feroz NI, Nigil Haroon N. Bone Mineral Density and Fracture Risk in Ankylosing Spondylitis: A Meta-Analysis. Calcif Tissue Int. 2017;101(2):182-192.
24. Bultink IE, Lems WF. Lupus and fractures. Curr Opin Rheumatol. 2016;28(4):426-32.
25. Chen YW, Ramsook AH, Coxson HO, et al. Prevalence and risk factors for osteoporosis in individuals with COPD: a systematic review and meta-analysis. Chest. 2019;156(6):1092-1110.
26. Liao KM, Liang FW, Li CY. Risks of all-cause and site-specific fractures among hospitalized patients with COPD. Medicine (Baltimore). 2016;95(40):e5070.
27. Dennison EM, Compston JE, Flahive J, et al. Effect of co-morbidities on fracture risk: findings from the Global Longitudinal Study of Osteoporosis in Women (GLOW). Bone. 2012;50:1288-1293.
28. Meyer D, Stavropolous S, Diamond B, et al. Osteoporosis in a north american adult population with celiac disease. Am J Gastroenterol. 2001;96:112-119.
29. Guevara Pacheco G, Chavez Cortes E, Castillo-Duran C. Micronutrient deficiencies and celiac disease in Pediatrics. Arch Argent Pediatr. 2014;112:457-463.
30. Bernstein CN, Leslie WD, Leboff MS. AGA technical review on osteoporosis in gastrointestinal diseases. Gastroenterology. 2003;124:795-841.
31. Van Staa TP, Cooper C, Brusse LS, et al. Inflammatory bowel disease and the risk of fracture. Gastroenterology. 2003;125:1591-1597.
32. Targownik LE, Bernstein CN, Nugent Z, et al. Inflammatory bowel disease and the risk of fracture after controlling for FRAX. J Bone Miner Res. 2013;28:1007-1013.
33. Pares A, Guanabens N. Osteoporosis in primary biliary cirrhosis: pathogenesis and treatment. Clin Liver Dis. 2008;12:407-424.
34. Gatta A, Verardo A, Di Pascoli M, et al. Hepatic osteodystrophy. Clin Cases Miner Bone Metab. 2014;11:185-191.
35. Carey EJ, Balan V, Kremers WK, et al. Osteopenia and osteoporosis in patients with end-stage liver disease caused by hepatitis C and alcoholic liver disease: not just a cholestatic problem. Liver Transpl. 2003;9:1166-1173.
36. Lauderdale DS, Thisted RA, Wen M, et al. Bone mineral density and fracture among prevalent kidney stone cases in the Third National Health and Nutrition Examination Survey. J Bone Miner Res. 2001;16:1893-1898.
37. Heilberg IP, Weisinger JR. Bone disease in idiopathic hypercalciuria. Curr Opin Nephrol Hypertens. 2006;15:394-402.
38. Green J, Kleeman CR. Role of bone in regulation of systemic acid-base balance. Kidney Int. 1991;39:9-26.
39. Weger M, Deutschmann H, Weger W, et al. Incomplete renal tubular acidosis in, primary‘ osteoporosis. Osteoporos Int. 1999;10:325-329.
40. Van Staa TP, Laan RF, Barton IP, et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 2003;48(11):3224-3229.
41. Hamilton EJ, Davis WA, Bruce DG, et al. Risk and associates of incident hip fracture in type 1 diabetes: the Fremantle Diabetes Study. Diabetes Res Clin Pract. 2017;134:153-160.
42. American Diabetes Association Professional Practice Committee; 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes—2024. Diabetes Care. 2024;47(Suppl.1):S52-S76.
43. Prentice A, Parsons TJ, Cole TJ. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994;60(6):837-842.
44. Nadeem M, Roche EF. Bone mineral density in Turner’s syndrome and the influence of pubertal development. Acta Paediatr. 2014;103(1):e38-e42.
45. Leslie WD, Johansson H, McCloskey EV, et al. Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD registry. J Bone Miner Res. 2018;33(11):1923-1930.
46. Kanis JA, Johansson H, Oden A, et al. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int. 2011;22(3):809-16.
47. McCloskey EV, Odén A, Harvey NC, et al. A meta-analysis of trabecular bone score in fracture risk prediction and and its relationship to FRAX. J Bone Mineral Res 2016;31:940-948.
48. Zhao JG, Zeng XT, Wang J, et al. Association Between Calcium or Vitamin D Supplementation and Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. JAMA. 2017;318(24):2466-2482.
49. Ayers C, Kansagara D, Lazur B, et al. Effectiveness and Safety of Treatments to Prevent Fractures in People With Low Bone Mass or Primary Osteoporosis: A Living Systematic Review and Network Meta-analysis for the American College of Physicians. Ann Intern Med. 2023;176(2):182-195.
50. Cho SK, Sung YK. Update on Glucocorticoid Induced Osteoporosis. Endocrinol Metab. 2021;36(3):536-543.
51. Reid DM, Devogelaer JP, Saag K, et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2009;373(9671):1253-1263.
52. Saag KG, Emkey R, Schnitzer TJ et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med. 1998;339:292-299.
53. Reid DM, Hughes RA, Laan RF, et al. Efficacy and safety of daily risedronate in the treatment of corticosteroidinduced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J Bone Miner Res. 2000;15:1006-10.
54. Adachi JD, Saag KG, Delmas PD, et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, doubleblind, placebo-controlled extension trial. Arthritis Rheum. 2001;44:202-211.
55. Saag KG, Wagman RB, Geusens P, et al. Denosumab versus risedronate in glucocorticoid-induced osteoporosis: a multicentre, randomised, double-blind, active-controlled, double-dummy, non-inferiority study. Lancet Diabetes Endocrinol. 2018;6(6):445-454.
56. Růžičková O, Bayer M, Pavelka K, Palička V. Doporučení pro prevenci a léčbu glukokortikoidy indukované osteoporózy u pacientů s revmatickým onemocněním (Společné stanovisko České revmatologické společnostia Společnosti pro metabolická onemocnění skeletu). Čes Revmatol. 2004;12:163-174.
57. Saag KG, Zanchetta JR, Devogelaer JP, et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, doubleblind, controlled trial. Arthritis Rheum 2009;60:3346-3355.
58. Deng J, Silver Z, Huang E, et al. Pharmacological prevention of fractures in patients undergoing glucocorticoid therapies: a systematic review and network meta-analysis. Rheumatology. 2021;60(2):649-657.
59. Hadji P, Aapro MS, Body JJ, et al. Management of Aromatase Inhibitor-Associated Bone Loss (AIBL) in postmenopausal women with hormone sensitive breast cancer: Joint position statement of the IOF, CABS, ECTS, IEG, ESCEO IMS, and SIOG. J Bone Oncol. 2017;7:1-12.
60. Miyashita H, Satoi S, Kuno T, et al. Bone modifying agents for bone loss in patients with aromatase inhibitor as adjuvant treatment for breast cancer; insights from a network meta-analysis. Breast Cancer Res Treat. 2020;181:279-289.
61. Brown JE, Handforth C, Compston JE, et al. Guidance for the assessment and management of prostate cancer treatment-induced bone loss. A consensus position statement from an expert group. J Bone Oncol. 2020;25:100311.
Labels
Clinical biochemistry Paediatric gynaecology Paediatric radiology Paediatric rheumatology Endocrinology Gynaecology and obstetrics Internal medicine Orthopaedics General practitioner for adults Radiodiagnostics Rehabilitation Rheumatology Traumatology OsteologyArticle was published in
Clinical Osteology

2025 Issue 1
Most read in this issue
- From despair to results: Clinical experience and effective strategies in the treatment of calciphylaxis
- Vitamin D – current overview of the issue and specifics in nephrological practice
- A completely now approach to the issue of bone disease in patients with chronic kidney disease – what KDIGO practice recommendations can we expect? Commentary on the KDIGO 2025 Controversies Conference.
- Několik slov úvodem