#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Significance and characteristics of selected genes in the pathogenesis of osteoporosis


Authors: Avuková Buriková Andrea 1;  Blaščáková Mydlárová Marta 1;  Poráčová Janka 1;  Tomková Soňa 3;  Hricová Katarína 1,2;  Petrejčíková Eva 1
Authors‘ workplace: Faculty of Humanities and Natural Science, Department of Biology, University of Prešov, Slovakia 1;  Department of Internal Medicine, AGEL Hospital Košice-Šaca, a. s., Slovakia 2;  Vth Department of Internal Medicine Faculty of Medicine Commenius University and University Hospital Bratislava, Hospital Ružinov, Bratislava, Slovakia 3
Published in: Clinical Osteology 2021; 26(2): 68-78
Category:

Overview

Osteoporosis is a complex disease affected not only by environmental factors but also by a strong genetic component. Genetic factors contribute to osteoporosis by affecting not only bone mineral density but also bone size, quality and bone turnover. However, determining the genetic architecture, and in particular the basic genomic and molecular mechanisms of osteoporosis in vivo in humans, is still challenging. In recent years, we have seen progress in research into the genetic background of osteoporosis in connection with the development of modern methods of molecular biology. Scientific research focuses primarily on the identification and characterization of selected polymorphisms of candidate genes, determining bone quality, bone density (BMD) and, last but not least, the risk of fractures. The results of molecular genetic research on osteoporosis significantly contribute / could contribute to the improvement not only of therapeutic and therapeutic procedures, but especially to the introduction of early prevention in personalized medicine.

Keywords:

BMD – fracture risk – gene – osteoporosis – polymorphism – BMD – fracture risk – gene – osteoporosis – polymorphism


Sources
  1. Hsu YH, Xu X, Jeong S. Genetic Determinants and Pharmacogenetics of Osteoporosis and Osteoporotic Fracture. (2020). In: Leder B, Wein M (eds). Osteoporosis. Contemporary Endocrinology. Humana, Cham. Available from DOI: <https://doi.org/10.1007/978–3-319–69287–6_25>.
  2. Yang TL, Shen H, Liu AA et al. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 2020; 16: 91–103. Available from D OI: <10.1038/s41574–019–0282–7>.
  3. Huang S, Ng GChT, You-Qiang S. Genetic disorders associated with osteoporosis. IntechOpen: London 2015. ISBN 978–953–51–7231–4.
  4. Spáčilová Z, Zrubcová D, Tináková S. Rizikové faktory osteoporózy v slovenskej populácii 40 a viacročných. Katedra ošetrovateľstva, Fakulta sociálnych vied a zdravotníctva, Univerzita Konštantína Filozofa v Nitre. Available from WWW: <https://dspace5.zcu.cz/bitstream/11025/35053/1/Sp%C3%A1%C4%8Dilov%C3%A1%20ad..pdf>.
  5. Marini F, Masi L, Marucci G et al. Genetics of Osteoporosis. In: Lenzi A, Migliaccio S. Multidisciplinary Approach to Osteoporosis. Springer 2018. ISBN 978–3-319–75110–8. Available from WWW: <https://link.springer.com/chapter/10.1007/978–3-319–75110–8_2>.
  6. Koromani F, Trajanoska K, Rivadeneira F et al. Recent Advances in the Genetics of Fractures in Osteoporosis. Front Endocrinol (Lausanne). 2 019; 1 0: 3 37. A vailable f rom D OI: < http://doi.org/10.3389/fendo.2019.00337>.
  7. Lenzi A, Migliaccio S. Multidisciplinary Approach to Osteoporosis. Springer: Rome (Italy) 2018. ISBN 978–3-319–75108–5.
  8. Clark GR, Duncan EL. The genetics of osteoporosis. Brit Med Bull 2015; 113(1): 7 3–81. A vailable f rom D OI: < http://dx.doi.org/10.1093/bmb/ldu042>.
  9. Rivadeneira F, Mäkitie O. Osteoporosis and Bone Mass Disorders: From Gene Pathways to Treatments. Trends Endocrynol Metab 2016; 2 7(5): 2 62–281. A vailable f rom D OI: < http://doi.org/10.1016/j.tem.2016.03.006>.
  10. Gažová A et al. Klinický význam komponentov systému RANK/RANKL/OPG u reumatoidnej a rtritídy. C lin O steol 2 018; 2 3(4): 1 76–180.
  11. Infante M, Fabi A, Francesco Cognetti F et al. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res 2019; 38(1). Available from DOI: <10.1186/s13046–018–1001–2>.
  12. Sisay M, Mengistu G, Edessa D. The RANK/RANKL/OPG system in tumorigenesis and metastasis of cancer stem cell: potential targets for anticancer therapy. Onco Targets Ther 2017; 2017(10): 3801–3810. Available from DOI: <http://10.2147/OTT.S135867>.
  13. Coudert AE, de Vernejoul MC, Muraza M et al. Osteopetrosis and its relevance for the discovery of new functions associated with the skeleton. J Int Endocrinol 2015; 2015:372156. Available from DOI: <http://10.1155/2015/372156>.
  14. Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review). Mol Med Rep 2015; 11(5): 3212–3218. Available from DOI: <http://dx.doi.org/10.3892/mmr.2015.3152>.
  15. Walsh MC, Choi Y. Biology of the RANKL – RANK – OPG System in Immunity, Bone and Beyond. Front Immunol 2014; 5:511. Available from DOI: <http://dx.doi.org/10.3389/fimmu.2014.00511>.
  16. Kumar D, Eng CH. Genomic medicine: principles and practise. University Press: Oxford 2015. ISBN 978–0-1998–9602–8.
  17. Boroňová I, Bernasovská J, Mačeková S et al. TNFRSF11B genepolymorphism, bone mineral density, and fractures in Slovak postmenopausal women. J Appl Genet 2015; 56(1): 57–63. Available from DOI: <http://dx.doi.org/10.1007/s13353–014–0247–4>.
  18. Sheng X, Cai G, Gong X et al. Common variants in OPG confer risk to bone mineral density variation and osteoporosis fractures. Sci Rep 2017; 7(1): 1739. Available from DOI: <http://dx.doi.org/10.1038/s41598–017–01579–6>
  19. Mydlárová Blaščáková M, Blaščáková L, Poráčová J et al. Relationship between A163G osteoprotegerin gene polymorphism and other osteoporosis parameters in Roma and non-Roma postmenopausal women in eastern Slovakia. J Clin Lab Anal 2017; 31(5): e22093. Available from DOI: <http://dx.doi.org/10.1002/jcla.22093>.
  20. Norwitz NG, Mota AS, Misra M et al. LRP5, Bone Density, and Mechanical Stress: A Case Report and Literature Review. Front Endocrinol ( Lausanne) 2 019; 1 0: 1 84. A vailable f rom D OI: < http://dx.doi.org/10.3389/fendo.2019.00184>.
  21. Xi Y, Jiang T, Yu J et al. The Investigation of LRP5-Loaded Composite with Sustained Release Behavior and Its Application in Bone Repair. Int J Polym Sci 2019; 1–8. Available from DOI: <http://doi10.1155/2019/1058410>.
  22. UniProtKB – O75197 (LRP5_HUMAN). UniProt 2019. Available from WWW: <https://www.uniprot.org/uniprot/O75197>.
  23. LRP5 gene. Genecards 2021. Available from WWW: <https://www.genecards.org/cgi-bin/carddisp.pl?gene=LRP5>.
  24. Mydlárová Blaščáková M, Petrejčíková E, Zigová M et al. Asociácia polymorfizmu rs599083 LRP5 génu s antropometrickými a denzitometrickými parametrami u postmenopauzálnych žien so zníženou kostnou denzitou – pilotná štúdia. Clin Osteol 2020; 25(3): 163–164.
  25. Park SE, Oh KW, Lee WY et al. Association of osteoporosis susceptibility genes with bone mineral density and bone metabolism related markers in Koreans. Endocr J 2014; 61(11): 1069–1078. Available from DOI: <10.1507/endocrj.ej14–0119>.
  26. Horváth P. Strong effect of SNP rs4988300 of the LRP5 gene on bone phenotype of Caucasian postmenopausal women. J Bone Miner Metab 2016; 34: 79–85Available from D OI: <http://10.1007/s00774–014–0645-z>.
  27. Sharma U, Carrique L, Vadon-Le Goff S et al. Structural basis of homo- and heterotrimerization of collagen I. Nat Commun 2017; 8: 14671. Available from DOI: <http://dx.doi.org/10.1038/ncomms14671>.
  28. U.S. National Library of Medicine. COL1A1 gene – collagen type I alpha 1 chain 2021. Available from WWW: <https://medlineplus.gov/genetics/gene/col1a1/>.
  29. Soibam D, Singh TA, Nandy P et al. Sp1 Binding Site Polymorphism at COL1A1 Gene and Its Relation to Bone Mineral Density for Osteoporosis Risk Factor Among the Sikkimese Men and Women of Northeast India. Ind J Clin Biochem 2019; 34: 230–233. Available from DOI: <https://doi.org/10.1007/s12291–017–0728–4>.
  30. Chen FP, Hsu KH, Fu TS et al. Risk factor for first-incident hip fracture in Taiwanese postmenopausal women. Taiwan J Obstet Gynecol 2 016; 5 5(2): 2 58–262. A vailable f rom D OI: < 10.1016/j.tjog.2015.12.017>.
  31. Xie P, Liu B, Zhang L et al. Association of COL1A1 polymorphisms with osteoporosis: A meta analysis of clinical studies. Int J Clin Exp Med 2 015; 8 (9): 14764–14781. A vailable f rom W WW: < https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658848/>.
  32. Falcón-Ramírez E, Hidalgo-Bravo A, Barredo-Prieto BA et al. Association of the COL1A1 gene polymorphisms in Mexican postmenopausal women with fracture or with low bone mineral density at the hip. Aging Clin Exp Res 2015; 28(3). Available from DOI: <10.1007/s40520–015–0449–6>.
  33. Yu K, Tang J, Dai CQ et al. COL1A1 gene -1997G/T polymorphism and risk of osteoporosis in postmenopausal women: a meta-analysis. Genet Mol Res 2015; 14(3): 10991–10998. Available from DOI: <https://doi 10.4238/2015>.
  34. Majchrzycki M, Bartkowiak-Wieczorek J, Wolski H et al. Polymorphisms of collagen 1A1 (COL1A1) gene and their relation to bone mineral density in postmenopausal women. Ginekologia Polska 2015; 1 2(86): 9 07–914. A vailable f rom D OI: < https://doi: 1 0.17772/gp/60550>.
  35. CER1 gene. Gene Cards 2021. Available from WWW: <http://www.genecards.org/cgi-bin/carddisp.pl?gene=CER1>.
  36. National center for biotechnology information. CER1 cerebrus 1, DAN family BMP antagonisti [Homo sapiens (human)]. NCBI 2021. Available from WWW: <https://www.ncbi.nlm.nih.gov/gene/9350>.
  37. Koromila T, Dailiana Z, Samara S et al. Novel Sequence Variations in the CER1 Gene Are Strongly Associated with Low Bone Mineral Density and Risk of Osteoporotic Fracture in Postmenopausal Women. Calcif T issue I nt 2 012; 9 1(15): 1 5–23. A vailable f rom D OI: < http://dx.doi.org/10.1007/s00223–012–9602–9>.
  38. Koromila T, Georgoulias P, Dailiana Z et al. CER1 gene variations associated with bone mineral density, bone markers, and early menopause in postmenopausal women. Human Genomic 2013; 7(1): 21. Available from DOI: <http://dx.doi.org/10.1186/1479–7364–7-21>.
  39. Mydlárová Blaščáková M, Petrejčíková E, Zigová M et al. Association of CER1 gene single nucleotide polymorphism rs 74434454 with osteoporosis in a cohort of postmenopausal women. VII Środokowo Europejski kongres osteoporozy i osteoartrozy 2019; 151–151.
  40. Marozik P, Rudenka A, Kobets K et al. Vitamin D Status, Bone Mineral Density, and VDR Gene Polymorphism in a Cohort of Belarusian Postmenopausal Women. Nutrients 2021; 13(837). Available from DOI: <https://doi.org/10.3390/nu13030837>.
  41. Boroňová I , Bernasovská J, Mačeková S et al. Association between vitamin D receptor gene polymorphisms (Fok I, Cdx-2) and bone mineral density in Slovak postmenopausal women. Anthropol Anz 2020; 77(3): 195–203. Available from DOI: <http://dx.doi.org/10.1127/anthranz/2020/1048>.
  42. PRDM16 PR/SET domain 16. GeneCards 2019. Available from WWW: <https://lnk.sk/mpg8>.
  43. Zhou B, Wang J, Lee SY et al. PRDM16 Suppresses MLL1r Leukemia via Intrinsic Histone Methyltransferase Activity. Mol Cell 2016; 62(2): 222–236. Available from DOI: <http://dx.doi.org/10.1016/j. molcel.2016.03.010>.
  44. Anti-PRDM16 (N-term) antibody produced in rabbi. Merck 2020. Available from WWW: <https://lnk.sk/m248>.
  45. Zeng HC, Bae Y, Dawson BC et al. MicroRNA miR-23a cluster promotes osteocyty diffetentiation by regulating TGF-β signalling in osteoblasts. Nat Commun 2017; 8: 15000. Available from DOI: <http://dx.doi.org/10.1038/ncomms15000>.
  46. Martinaityte I, Jorde R, Emaus N et al. Bone mineral density is associated with vitamin D related rs6013897 and estrogen receptor polymorphism rs4870044: The Tromsø study. PLoS One 2017; 12(3): 1–12. Available from DOI: <10.1371/journal.pone.0173045>.
  47. Montazeri-Najafabady N, Dabbaghmanesh MH, Mohammadian Amiri R et al. Influence of Estrogen Receptor Alpha Polymorphism on Bone Mineral Density in Iranian Children. Hum Hered 2019; 84(2): 82–89. Available from DOI: <10.1159/000502230>.
  48. Zhu H, Jiang J, Wang Q et al. Associations between ERα/β gene polymorphisms and osteoporosis susceptibility and bone mineral density in postmenopausal women: a systematic review and meta-analysis. BMC Endocr Disord 2018; 18(11): 1–16. Available from DOI: <10.1186/s12902–018–0230-x>.
  49. Ferrari S. Human genetics of osteoporosis. Best Pract Res Clin Endocrinol Metab 2008; 2 2(5): 723–735. Available from D OI: <http://dx.doi.org/10.1016/j.beem.2008.08.007>.
  50. Mondockovy V, Adamkovicova M, Lukacova M et al. The estrogen receptor 1 gene affects bone mineral density and osteoporosis treatment efficiency in Slovak postmenopausal women. In: BMC Med genet 2 018; 19(1): 1–13. Available from DOI: <10.1186/s12881–018–0684–8>.
  51. Xu X, Dong SS, Guo Y et al. Molecular genetic studies of gene identification for osteoporosis. E ndocr R e v 2 010; 3 1(4): 4 47–505. Dostupné z DOI: < https://doi.org/10.1210/er.2009–0032>.
Labels
Clinical biochemistry Paediatric gynaecology Paediatric radiology Paediatric rheumatology Endocrinology Gynaecology and obstetrics Internal medicine Orthopaedics General practitioner for adults Radiodiagnostics Rehabilitation Rheumatology Traumatology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#