#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

MicroRNAs in osteoporotic patients


Authors: L. Mačátová;  H. Kovaříková;  V. Palička
Authors‘ workplace: Ústav klinické biochemie a diagnostiky LF a FN Hradec Králové
Published in: Klin. Biochem. Metab., 28, 2020, No. 4, p. 139-143

Overview

Osteoporosis is a chronic systemic skeletal disease that, at its most serious, cause death. For the proper physiological development of bone tissue, a combination of unnecessary factors is needed. In recent years, microRNAs have come to the forefront of interest. MicroRNAs are short non-coding RNA molecules that play an important role in posttranscriptional regulation of gene expression. They also affect bone metabolism, and alterations in their expression may be involved in variety of pathological conditions, including osteoporosis. Recently, there is an increasing number of publications focusing on the detection of specific microRNAs associated with osteoporosis. In the future, these molecules could serve as useful biomarkers or therapeutic targets.

Keywords:

MicroRNAs – osteoporosis – Osteoclasts – Osteoblasts


Sources

1.    Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am. J Med., 1993, 94/6, p. 646–650.

2.    Borgström, F., Zethraeus, N., Johnell, O. et al. Costs and quality of life associated with osteoporosis-related fractures in Sweden. Osteoporos. Int., 2006, 17/5, p. 637–650.

3.    Compston, J. E., McClung, M. R., Leslie, W. D. Osteoporosis. Lancet, 2019, 393/10169, p. 364–376.

4.    Del Fattore, A., Teti, A., Rucci, N. Osteoclast receptors and signaling. Arch. Biochem. Biophys., 2008, 473/2, p. 147–160.

5.    Khosla, S. Minireview: The OPG/RANKL/RANK System. Endocrinology, 2001, 142/12, p. 5050–5055.

6.    Arai, F., Miyamoto, T., Ohneda, O. et al. Commitment and Differentiation of Osteoclast Precursor Cells by the Sequential Expression of C-Fms and Receptor Activator of Nuclear Factor κb (Rank) Receptors. J Exp. Med., 1999, 190/12, p. 1741–1754.

7.    Hill, T. P., Später, D., Taketo, M. M. et al. Canonical Wnt/β-Catenin Signaling Prevents Osteoblasts from Differentiating into Chondrocytes. Develop. Cell, 2005, 8/5, p. 727–738.

8.    Gennari, L., Bianciardi, S., Merlotti, D. MicroRNAs in bone diseases. Osteoporos. Int., 2017, 28/4, p. 1191–1213.

9.    Lee, Y., Jeon, K., Lee, J. T. et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002, 21/17, p. 4663–4670.

10.  Lee, Y., Ahn, C., Han, J. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425/6956, p. 415.

11.  Lund, E., Dahlberg, J. E. Substrate Selectivity of Exportin 5 and Dicer in the Biogenesis of MicroRNAs, 2006, 71, p. 59-66.

12.  Bartel, D. P. MicroRNAs: Target Recognition and Regulatory Functions. Cell, 2009, 136/2, p. 215–233.

13.  Parsons, C., Adams, B., Walker, L. et al. Targeting Noncoding RNAs in Disease. J Clin. Invest., 2017, 127, p. 761-771

14.  Peng, B., Chen, Y., Leong, K. W. MicroRNA delivery for regenerative medicine. Adv. Drug Deliv. Rev., 2015, 88, p. 108–122.

15.  Muthiah, M., Park, I. K., Cho, C. S. Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Exp. Opin. Drug Deliv., 2013, 10/9, p. 1259–1273.

16.  Slabý, O. MikroRNA vstupují do klinického testování. Časopis Klinická onkologie, 2012, 25/2, p. 139-142

17.  Li, H., Wang, Z., Fu, Q. et al. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers, 2014, 19/7, p. 553–556.

18.  Li, Z., Zhang, W., Huang, Y. MiRNA-133a is involved in the regulation of postmenopausal osteoporosis through promoting osteoclast differentiation. Act. Biochim. Biophys. Sinica, 2018, 50/3, p. 273–280.

19.  Wang, Y., Li, L., Moore, B. T. et al. MiR-133a in Human Circulating Monocytes: A Potential Biomarker Associated with Postmenopausal Osteoporosis. PLoS ONE, 2012, 7/4, e34641.

20.  Li, Z., Hassan, M. Q., Volinia, S. et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proceedings of the National Academy of Sciences of the United States of America, 2008,  105/37, p. 13906–13911.

21.  Cao, Z., Moore, B. T., Wang, Y. et al. MiR-422a as a Potential Cellular MicroRNA Biomarker for Postmenopausal Osteoporosis. PLoS ONE, 2014, 9/5, e97098.

22.  Bedene, A., Mencej Bedrač, S., Ješe, L. et al. MiR-148a the epigenetic regulator of bone homeostasis is increased in plasma of osteoporotic postmenopausal women. Wiener klinische Wochenschrift, 2016, 128/7, p. 519–526.

23.  Seeliger, C., Karpinski, K., Haug, A. T. et al. Five Freely Circulating miRNAs and Bone Tissue miRNAs Are Associated With Osteoporotic Fractures. J Bone Mineral Res., 2014, 29/8, p. 1718–1728.

24.  Kim, K., Kim, J. H., Lee, J. et al. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood, 2007, 109/8, p. 3253–3259.

25.  Cheng, P., Chen, C., He, H. B. et al. MiR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Mineral Res., 2013, 28/5, p. 1180–1190.

26.  Kelch, S., Balmayor, E. R., Seeliger, C. et al. MiRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients. Sci. Reports, 2017, 7/1, 15861.

27.  Panach, L., Mifsut, D., Tarín, J. J. et al. Serum Circulating MicroRNAs as Biomarkers of Osteoporotic Fracture. Calc. Tiss. Int., 2015, 97/5, p. 495–505.

28.  Yavropoulou, M. P., Anastasilakis, A. D., Makras, P. et al. Expression of microRNAs that regulate bone turnover in the serum of postmenopausal women with low bone mass and vertebral fractures. Eur. J Endocrinol., 2017, 176/2, p. 169–176.

29.  Sugatani, T., Vacher, J., Hruska, K. A. A microRNA expression signature of osteoclastogenesis. Blood, 2011, 117/13, p. 3648–3657.

30.  Sugatani, T., Hruska, K. A. Down-Regulation of miR-21 Biogenesis by Estrogen Action Contributes to Osteoclastic Apoptosis. J cell. Biochem., 2013, 114/6, p. 1217–1222.

31.  Mei, Y., Bian, C., Li, J. et al. MiR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J cell. Biochem., 2013, 114/6, p. 1374–1384.

32.  Meng, Y. B., Li, X., Li, Z. Y. et al. MicroRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway. J Orthopaed. Res., 2015, 33/7, p. 957–964.

33.  Chen, C., Cheng, P., Xie, H. et al. MiR-503 Regulates Osteoclastogenesis via Targeting RANK. J Bone Mineral Res., 2014, 29/2, p. 338–347.

34.  Jiménez-Ortega, R. F., Ramírez-Salazar, E. G., Parra-Torres, A. Y. et al. Identification of microRNAs in human circulating monocytes of postmenopausal osteoporotic Mexican-Mestizo women: A pilot study. Exp. Therapeut. Med., 2017, 14/6, p. 5464–5472.

35.  Meng, J., Zhang, D., Pan, N. et al. Identification of miR-194-5p as a potential biomarker for postmenopau-sal osteoporosis. PeerJ, 2015, 3, e971.

36.  De-Ugarte, L., Yoskovitz, G., Balcells, S. et al. MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med. Genom., 2015, 8, ID 75.

37.  Kong, Y., Nie,, Z. K., Li, F. et al. MiR-320a was highly expressed in postmenopausal osteoporosis and acts as a negative regulator in MC3T3E1 cells by reducing MAP9 and inhibiting PI3K/AKT signaling pathway. Exp. Mol. Pathol., 2019, 110, p. 104282.

38.  Ramírez-Salazar E. G., Carrillo-Patiño S., Hidalgo-Bravo, A. et al. Serum miRNAs miR-140-3p and miR-23b-3p as potential biomarkers for osteoporosis and osteoporotic fracture in postmenopausal Mexican-Mestizo women. Gene, 2018, 679, p. 19–27.

39.  Mandourah, A. Y., Ranganath, L., Barraclough, R. et al. Circulating microRNAs as potential diagnostic biomarkers for osteoporosis. Sci. Rep., 2018, 8, p. 3609.

40.  Liu, H., Liu, Q., Wu, X. P. et al. MiR-96 regulates bone metabolism by targeting osterix. Clin. Exp. Pharmacol. Phys., 2018, 45/6, p. 602–613.

41.  Yang, N., Wang, G., Hu, C. et al. Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency–induced osteoporosis. J Bone Mineral Res., 2013, 28/3, p. 559–573.

42.  Zeng, Y., Qu, X., Li, H. et al. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Letters, 2012, 586/16, p. 2375–2381.

43.  Chen, S., Yang, L., Jie, Q. et al. MicroRNA‑125b suppresses the proliferation and osteogenic differentiation of human bone marrow‑derived mesenchymal stem cells. Mol. Med. Rep., 2014, 9/5, p. 1820–1826.

44.  Anastasilakis, A. D., Makras, P., Pikilidou, M. et al. Changes of Circulating MicroRNAs in Response to Treatment With Teriparatide or Denosumab in Postmenopausal Osteoporosis. J Clin. Endocrinol. Metabol., 2018, 103/3, p. 1206–1213.

45.  Anastasilakis, A. D., Yavropoulou, M. P., Makras, P. et al. Increased osteoclastogenesis in patients with vertebral fractures following discontinuation of denosumab treatment. Eur. J Endocrinol., 2017, 176/6, p. 677–683.

Labels
Clinical biochemistry Nuclear medicine Nutritive therapist
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#