#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Subfrakcie HDL častíc u srdcového zlyhávania


Authors: Murín J. 1;  Bulas J. 1;  Gašpar Ľ. 1;  Klabník A. 2;  Wawruch M. 3
Authors‘ workplace: I. interná klinika LF UK a UN Bratislava 1;  Kardiologická ambulancia, Oravská poliklinika, Námestovo 2;  Ústav farmakológie a klinickej farmakológie LF UK, Bratislava 3
Published in: Kardiol Rev Int Med 2019, 21(3): 168-170

Overview

Niekoľko desaťročí sa prešetruje úloha HDL častíc u kardiovaskulárnych (KV) ochorení. Framinghamská štúdia preukázala, že osoby s vysokou sérovou hladinou HDL cholesterolu (HDL-c) mávajú nízke KV riziko, a vznikla tak „HDL-hypotéza“, že zvýšením sérovej hladiny HDL-c u pa­cientov redukujeme výskyt KV príhod i mortality. Ale túto hypotézu nepotvrdili veľké klinické štúdie (s niacínom, s CETP inhibítormi), hoci došlo k zvýšeniu sérovej hladiny HDL-c. A tak sa začalo s podrobnou analýzou HDL častíc a zistili sa ich pleiotrópne účinky –  menšie a denznejšie HDL častice vykazovali väčší cholesterolový eflux, tiež protizápalové a antioxidačné vlastnosti ako väčšie a menej denzné HDL častice. A v prípade zvýšenia menších a denznejších HDL častíc v sére u nositeľov bolo nižšie riziko vzniku ischemickej choroby srdca, karotickej aterosklerózy, veľkých KV príhod i úmrtia. V tejto práci sú údaje o subfrakciách HDL častíc u pa­cientov so srdcovým zlyhávaním (systolickým s počtom 782, aj „diastolickým“ s počtom 1 004 pa­cientov) –  1. väčšie HDL častice boli v podskupine pa­cientov so systolickým srdcovým zlyhávaním a naopak menšie HDL častice boli u pa­cientov s „diastolickým“ srdcovým zlyhávaním; 2. výskyt malých HDL častíc bol priaznivý u chorých so srdcovým zlyhávaním, nakoľko nepriamo úmerne asocioval s výskytom KV príhod. Teda výskyt subfrakcií HDL častíc je markerom reziduálneho KV rizika u chorých so srdcovým zlyhávaním.

Klíčová slova:

HDL častica – subfrakcie HDL častice – srdcové zlyhávanie – kardiovaskulárne príhody

Úvod

Niekoľko desaťročí sa sleduje a vyšetruje úloha HDL (lipoproteinov) u kardiovaskulárnych (KV) ochorení. V roku 1977 publikovali autori Framinghamskej štúdie poznatok, že osoby s vysokými sérovými hladinami HDL cholesterolu (HDL-c) mávajú nízke KV riziko [1]. Preukázali to aj iné populačné štúdie, a tak vznikla „HDL-hypotéza“, ktorá tvrdila, že ak zvýšime sérovú hladinu HDL-c u osôb/ pa­cientov, tak u nich redukujeme výskyt veľkých KV príhod aj mortalitu [2]. Ale túto hypotézu nepotvrdili v nedávnych rokoch randomizované veľké klinické štúdie (liečba niacínom, inhibítormi CETP), ktoré dokázali významne zvýšiť koncentráciu HDL-c v sére, čo však neprinieslo očakávaný klinický benefit [3– 7]. A práve tento nesúlad „epidemiológie“ (vysoký HDL-c v sére je užitočný) s „klinickými štúdiami“ (zvýšili HDL-c v sére, ale nedosiahli klinický benefit) viedol výskumníkov k analýze HDL-c častice –  aké je jej zloženie a aká je fyziológia tejto častice.

A tieto nové štúdie HDL častice odhalili pleiotrópne účinky týchto častíc, a to rôznorodo podľa typu subfrakcií častíc –  menšie a denznejšie častice vykazovali väčší cholesterolový eflux (prijatie cholesterolu), väčšie protizápalové a antioxidačné vlastnoti, tiež väčšiu endotel-protektívnu kapacitu ako väčšie a menej denzné HDL častice [2,8,9]. Ale dôležitou skutočnosťou tu bolo aj klinické zistenie (veľkých epidemiologických kohortových štúdií –  the Framingham Offspr­ing Jackson Heart Studies), že u pa­cientov s vyššou koncentráciou menších a denznejších HDL častíc v sére bolo nižšie riziko vzniku ischemickej choroby srdca, vzniku karotickej aterosklerózy, úmrtia a vzniku veľkých KV príhod [10– 13]. Analýza týchto dát ukázala, že plazmatická celková koncentrácia častíc HDL je silnejším prediktorom KV rizika než samotná koncentrácia HDL-c [14]. A toto poznanie vlastne zmenilo paradigmu pohľadu na HDL časticu –  fokus je dnes hlavne na koncentráciu HDL častíc v sére, na samotné charakteristiky týchto častíc a hlavne na ich funkčné charakteristiky –  a nie na obsah cholesterolu v nich.

Pomerne veľa toho už dnes vieme o subfrakciách HDL častíc u ischemickej choroby srdca a u osôb v primárnej KV prevencii, ale veľmi málo toho vieme o týchto častiach u chorých so srdcovým zlyhávaním (SZ). Ale niečo už vieme o tom, že HDL subfrakcie modulujú kľúčové patogenetické cesty pri vzniku i pri progresii SZ [15].

Subfrakcie HDL častíc u chorých so srdcovým zlyhávaním –  ako sa vyšetrovali

Subfrakcie HDL častíc sa dajú zhodnotiť vyšetrením magnetickou rezonanciou, tzv. spektroskopiou plazmy (nalačno odobratej a následne zmrznutej). Tiež sa dajú zhodnocovať analýzou koncentrácií HDL častíc –  všetky častice, malé častice (7,3– 8,2 nm), stredne veľké (8,2– 8,8 nm) a veľké (8,8– 13,0 nm), tiež priemerné veľkosti (všetkých častíc) [16].

Hunter et al [17] vybrali pa­cientov z projektu CATHGEN (Catheterization Genetics), ktorý prebieha v centre Duke University [18,19]. Vybrali tri kohorty pa­cientov so SZ:

  1. pa­cienti so systolickým SZ (ejekčná frakcia EF < 45 %);
  2. pa­cienti so zachovalou EF („diastolickým“ SZ), t. j. s EF ≥ 45 %;
  3. pa­cienti bez SZ s EF ≥ 45 % a bez klinických údajov o SZ.

V analýzach sa sústredili ešte na zohľadnenie rôznych úrovní EF, diastolických funkčných parametrov a tlakov v ľavej komore. Analýzy prítomnosti SZ realizoval kardiológ v období katetrizácie chorých, EF a funkcie srdca sa realizovali pri ventrikulografii v čase katetrizácie, nukleárnym vyšetrením, magnetickou rezonanciou alebo echokardiograficky.

V čase sledovali u pa­cientov výskyt klinických príhod:

  • a) primárny end-point bola celková mortalita;
  • b) druhotný end-point bolo úmrtie alebo výskyt veľkej KV príhody (infarkt myokardu, aorto-koronárny bypass, perkutánna koronárna intervencia –  7, 14 či 30 deň po katetrizácii).

Subfrakcie HDL častíc u chorých so srdcovým zlyhávaním –  výsledky

Vstupné charakteristiky pa­cientov podľa typu SZ –  s redukovanou (782 pa­cientov) vs. so zachovalou (1 004 pa­cientov) EF. Vek (62 vs. 64 rokov, rozdiel významný, S), belosi (66 vs. 74 %, S), muži (71 vs. 54 %, S), BMI (30 vs. 32, S), EF (29 vs. 59 %, S), glomerulárna filtrácia (67 vs. 68 ml/ min, NS), výskyt hypertenzie (72 vs. 75 %, S), diabetu (37 vs. 35 %, NS), viac-cievne koronárne ochorenie (trojcievne: 36 vs. 22 %, S), fajčenie (54 vs. 50 %, NS), dislipidémia (58 vs. 64 %, S), ale koncentrácie celkového aj LDL-c a tiež triglyceridov boli v oboch podskupinách SZ podobné.

Medián sledovania chorých bol 7,0 rokov:

  • a) úmrtie (53 vs. 41 %, S);
  • b) výskyt veľkých KV príhod plus úmrtia (58 vs. 49 %, S).

Výskyt HDL častíc v sére a ich charakteristiky:

  • a) celkový počet častíc (27,2 vs. 28,6 nmol/ l, S);
  • b) výskyt veľkých HDL-c častíc (5,4 vs. 5,0 nmol/ l, S);
  • c) výskyt stredne veľkých častíc (9,7 vs. 10,2 nmol/ l, S);
  • d) výskyt malých častíc (12,1 vs. 13,4 nmol/ l, S);
  • e) veľkosť HDL častíc (9,4 v. 9,3 nm), NS);
  • f) obsah cholesterolu v HDL (HDL-c) časticiach (36,7 vs. 37,9 mg/ dl, NS).

Vzťahy medzi počtom HDL častíc a výskytom KV príhod (podľa subfrakcií HDL častíc):

  • a) celkový počet HDL častíc a počet malých HDL častíc bol nepriamo úmerný riziku výskytu celkovej mortality (v prípade systolického SZ to bolo 0,69 pre celkový počet a 0,70 pre počet malých HDL častíc vs. v prípade diastolického SZ to bolo v tom istom poradí 0,73 a 0,73, kde dané čísla vyjadrovali adjustované relatívne riziká a v oboch prípadoch bol vzťah počtu častíc s redukovaným výskytom KV príhod významný, S);
  • b) väčšia stredná veľkosť HDL častice asociovala so zvýšeným rizikom celkovej mortality (u systolického SZ s hodnotou relatívneho rizika, RR 1,23, S vs. u diastolického SZ s RR 1,35, S);
  • c) v prípade výskytu veľkých HDL častíc bola asociácia so zvýšeným rizikom celkovej mortality len v prípade SZ s diastolickou dysfunkciou –  a RR 1,29, S).

Tieto (už uvedené) zmeny neboli ovplyvnené zohľadnením (multivariátna analýza) viacerých hodnôt EF, tiež hodnotením diastolickej dysfunkcie a hodnotením intraventrikulárnych tlakov.

Hunter et al [17] vyhodnotili i vzťah systémovej inflammácie (prostredníctvom analýzy GlycA v sére) [16,20,21] k funkcii HDL častíc. Preukázali slabší, ale štatisticky významný vzťah medzi GlycA a počtom stredne veľkých a počtom malých HDL častíc. Nenašli asociáciu medzi GlycA a celkovým počtom HDL častíc alebo počtom veľkých HDL častíc.

Čo táto analýza pre klinickú prax ponúka

Uvedené zmeny (celkový počet HDL častíc, priemerná veľkosť HDL častíc a zmeny početnosti malých i veľkých HDL častíc) v porovnaní s kontrolnou skupinou pa­cientov (podobných charakteristík len bez prítomnosti SZ), boli výraznejšie zastúpené u chorých so systolickým SZ a menej u pa­cientov so SZ pri normálnej EF. A tieto zmeny u oboch typov SZ asociovali s výskytom (nežiaducich) KV príhod. Teda získané údaje poukazujú na to, že počet HDL častíc a ich subfrakcií je významným markerom reziduálneho KV rizika u chorých so SZ. Tieto údaje tiež ukazujú významné rozdiely v metabolizme HDL častíc u oboch typov SZ.

Aj Potočnjak et al [22] podobne ako Hunter et al [17] preukázali inverzný vzťah medzi počtom všetkých HDL častíc a aj počtom malých HDL častíc a 3-mesačným prežívaním pa­cientov hospitalizovaných pre akútne SZ. Avšak štúdia Huntera et al [17] bola počtom pa­cientov robustnejšia a preukázala vzťah aj k celkovej mortalite, ale aj k veľkým KV príhodám. Tiež tento vzťah potvrdila pre oba typy pa­cientov so SZ. Tieto výsledky naznačujú, že počet HDL častíc a aj ich subfrakcií a tiež ich veľkosť sú i dobrým bio­markerom prognózy pa­cientov so SZ a mohli by i naznačovať smer pre nové liečebné prístupy.

Inverzný vzťah medzi celkovým počtom HDL-c častíc a počtom malých HDL-c častíc voči výskytu KV príhod i mortality nebol závislý od hodnôt EF a ani od hodnôt diastolickej dysfunkcie či intrakardiálneho ľavokomorového tlaku.

Nálezy neboli ovplyvnené ani multivariátnym zohľadnením viacerých metabolických a zápalových faktorov, ktoré by mohli ovplyvniť zloženie i funkciu HDL častíc (GlucA parameter, diabetes, BMI, ApoB₁, triglyceridy) [23,24]. Patomechanizmus stojaci za inverzným vzťahom malých HDL častíc s mortalitou/ KV príhodami nie je objasnený. Isté údaje naznačujú, že malé HDL-c častice zabezpečujú výraznejšie reverzný cholesterolový transport, majú antiinflammačný, antioxidatívny, endotel-protektívny vplyv v porovnaní s väčšími HDL časticami [2,8,9]. HDL častice podporujú uvoľňovanie prostacyklínu z hladkosvalových cievnych buniek (cestou COX-2 dráhy) a tiež inhibujú expresiu adhezívnych molekúl na endotelových bunkách (aktivovaných cytokínmi [25,26].

I táto práca sčasti naznačuje cesty budúceho prístupu k prevencii/ liečbe pa­cientov so SZ, a to cestou ovplyvnenia tiež HDL-c častíc (a nielen liečbou LDL-c).

Práca bola podporená grantom VEGA 1/ 0112/ 17 a grantom VEGA1/ 0807/ 18

Doručeno do redakce: 30. 7. 2019

Přijato po recenzi: 16. 8. 2019

prof. MUDr. Ján Murín, CSc.

www.unb.sk

jan.murin@gmail.com


Sources

1. Gordon T, Castelli WP, Hjortland MC et al. High density lipoprotein as a protective factor against coronary heart dis­ease. The Framingham Study. Am J Med 1977; 62(5): 707– 714. doi: 10.1016/ 0002-9343(77)90874-9.

2. Toth PP, Barter PJ, Rosenson RS et al. High-density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol 2013; 7(5): 484– 525. doi: 10.1016/ j.jacl.2013.08.001.

3. Boden WE, Probstfield JL, Anderson T et al. AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiv­ing intensive statin ther­apy. N Engl J Med 2011; 365(24): 2255– 2267. doi: 10.1056/ NEJMoa1107579.

4. Schwartz GG, Olsson AG, Abt M et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 2012; 367(22): 2089– 2099. doi: 10.1056/ NEJMoa1206797.

5. Barter PJ, Caulfield M, Erikssson M et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357(21): 2109– 2122. doi :10.1056/ NEJMoa0706628.

6. HPS2-THRIVE Collaborative Group. HPS2-THRIVE randomized placebo-controlled tiral in 25 673 high-risk patietns of ER niacin/ laropiprant: trial design, pre-specified muscle and liver out-comes, and reasons for stopp­ing study treatment. Eur Heart J 2013; 34(17): 1279– 1291. doi: 10.1093/ eurheartj/ eht055.

7. Lincoff AM, Nicholls SJ, Riesmeyer JS et al. Evacetrapib and cardiovascular outcomes in high-risk vascular dis­ease. N Engl J Med 2017; 376(20): 1933– 1942. doi: 10.1056/ NEJMoa1609581.

8. Kingwell BA, Chapman MJ, Kontush A et al. HDL-targeted ther­apies: progess, failures and future. Nat Rev Drug Discov 2014; 13(6): 445– 464. doi: 10.1038/ nrd4279.

9. McGarrah RW. Refocus­ing the AIM on HDL in the metabolic syndrome. Atherosclerosis 2016; 251: 531– 533. doi: 10.1016/ j.atherosclerosis.2016.06.051.

10. Mackey RH, Greenland P, Goff DC et al. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2012; 60(6): 508– 516. doi: 10.1016/ j.jacc.2012.03.060.

11. Yu S, Yarnell JW, Sweetnam P et al. High density lipoprotein subfractions and the risk of coronary heart dis­ease: 9-years follow-up in the Caerphilly Study. Atherosclerosis 2003; 166(2): 331– 338. doi: 10.1016/ s0021-9150(02)00361-1

12. Kim DS, Burt AA, Rosenthal EA et al. HDL-3 is a superior predictor of carotid artery dis­ease in a case-control cohort of 1725 participants. J Am Heart Assoc 2014; 3(3): e000902. doi: 10.1161/ JAHA.114.000902.

13. Martin SS, Khokhar AA, May HT et al. HDL cholesterol subclasses, myocardial infarction, and mortality in secondary prevention: the Lipoprotein Investigators Collaborative. Eur Heart J 2015; 36(1): 22– 30. doi: 10.1093/ eurheartj/ ehu264.

14. McGarrah RW, Craig DM, Haynes C et al. High-density lipoprotein subclass measurements improve mortality risk prediction, discrimination and reclassification in a cardiac catheterization cohort. Atherosclerosis 2016; 246: 229– 235. doi: 10.1016/ j.atherosclerosis.2016.01.012.

15. Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular dis­ease. Trends Mol Med 2011; 17(10): 594– 603. doi: 10.1016/ j.molmed.2011.05.013.

16. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med 2006; 26(4): 847– 870. doi: 10.1016/ j.cll.2006.07.006.

17. Hunter WG, McGarrah RW, Kelly JP et al. High-density lipoprotein particle subfractions in Heart Failure with preserved or reduced ejection fraction. J Am Coll Cardiol 2019; 73(2): 177– 186. doi: 10.1016/ j.jacc.2018.10.059.

18. Shah SH, Granger CB, Hauser ER et al. Reclassification of cardiovascular risk us­ing integrated clinical and molecular bio­signatures: design of and rationale for the Measurement to Understand the Reclassification od Dis­ease of Cabarrus and Kannapolis (MURDOCK) Horizon 1 Cardiovascular Dis­ease-Study. Am Heart J 2010; 160(3): 371– 379.e372. doi: 10.1016/ j.ahj.2010.06.051.

19. Kraus WE, Granger CB, Sketch MH Jr et al. A guide for a cardiovascular genomics bio­repository: the CATHGEN experience. J Cardiovasc Transl Res 2015; 8(8): 449– 457. doi: 10.1007/ s12265-015-9648-y.

20. Akinkuolie AO, Bur­ing JE, Ridker PM et al. A novel protein glycan bio­marker and future cardiovascular dis­ease events. J Am Heart Assoc 2014; 3(5): e001221. doi: 10.1161/ JAHA.114.001221.

21. McGarrah RW, Kelly JP, Craig DM et al. A novel protein glycan-derived inflammation bio­marker independently predicts cardiovascular dis­ease and modifies the association of HDL subclasses with mortality. Clin Chem 2017; 63(1): 288– 296. doi: 10.1373/ clinchem.2016.261636.

22. Potočnjak I, Degoricija V, Trbušič M et al. Serum concentration of HDL particles predicts mortality in acute heart failure patients. Sci Rep 2017; 7: 46642. doi: 10.1038/ srep46642.

23. Akinkuolie AO, Paynter NP, Padmanabhan L et al. High-density lipoprotein particle subclass heterogeneity and incident coronary heart dis­ease. Circ Cardiovasc Qual Outcomes 2014; 7(1): 55– 63. doi: 10.1161/ CIRCOUTCOMES.113.000675.

24. El Harchaoui K, Arsenault BJ, Franssen R et al. High-density lipoprotein particle size and concentration and coronary risk. Ann Intern Med 2009; 150(2): 84– 93. doi: 10.7326/ 0003-4819-150-2-200901200-00006.

25. Cockerill GW, Rye KA, Gamble JR et al. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol 1995; 15(11): 1987– 1994.

26. Cockerill GW, Saklatvala J, Ridley SH et al. Hihg-density lipoproteins differentially modulate cytokine-induced expression of E-selectin and cyclo­oxygenase-2. Arterioscler Thromb Vasc Biol 1999; 19(4): 910– 917.

Labels
Paediatric cardiology Internal medicine Cardiac surgery Cardiology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#