#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Úloha bielkovín tepelného šoku v leukémii


Autoři: K. Kliková;  I. Pilchova;  A. Stefanikova;  J. Hatok;  D. Dobrota;  P. Racay
Působiště autorů: Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
Vyšlo v časopise: Klin Onkol 2016; 29(1): 29-38
Kategorie: Přehled
doi: https://doi.org/10.14735/amko201629

Souhrn

Bielkoviny tepelného šoku (heat shock proteins –  HSPs) HSP27, HSP70 a HSP90 sú molekulárne šaperóny, ktorých expresia sa zvyšuje ovplyvnením buniek po pôsobení enviromentálneho stresu, akými sú tepelný šok, ťažké kovy, oxidačný stres alebo pri patologických podmienkach ako napr. ischémia, infekcia a zápal. Ich protektívna úloha pomáha bunke vyrovnať sa s letálnymi podmienkami. HSPs sú skupina bielkovín, ktoré v zdravých bunkách zodpovedajú za udržanie homeostázy, za interakciu s rôznymi bielkovinovými substrátmi na zabezpečenie ich správneho zbalenia, zabraňujú zbaľovaniu intermediátorov, ktoré vedú ku tvorbe chybne zbalených alebo poškodených molekúl. Ukázalo sa, že interagujú s rôznymi kľúčovými bielkovinami a zohrávajú úlohu v regulácii apoptózy. Viaceré bielkoviny tepelného šoku preukázali priamu interakciu s rozličnými zložkami úzko regulovanej kaspázovo-závislej programovanej bunkovej smrti. Tieto bielkoviny rovnako ovplyvňujú kaspázovo-nezávislú dráhu apoptózy väzbou s apoptickými faktormi. Bielkoviny tepelného šoku sú odlišne exprimované v hematologických malignitách. Z dôvodu ich asociácie a úlohy v leukémiách, HSPs predstavujú zaujímavý cieľ v antileukemickej terapii. Tento prehľadový článok opisuje rôzne molekuly intaragujúce s antiapoptotickými bielkovinami HSP70 a HSP90, ktoré by mohli byť využité v nádorovej terapii na základe ich inhibície.

Klúčové slová:
bielkoviny tepelného šoku –  inhibítory –  leukémia –  apoptóza

Táto práca bola podporená grantom „Zvýšenie možností kariérneho rastu vo výskume a vývoji v oblasti lekárskych vied“ (IMTS 26110230067), operačný program Vzdelávanie, doc. MUDr. Ján Staško, PhD., mim. prof., 2012–2015.

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

Obdržané:
7. 8. 2015

Prijaté:
11. 10. 2015


Zdroje

1. De Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock 1999; 11: 1– 12.

2. Ritos­sa F. A new puf­f­ing pattern induced by heat shock and DNP in drosophila. Experientia 1962; 18: 571– 573.

3. Khalil AA, Kabapy NF, Deraz SF et al. Heat shock proteins in oncology: dia­gnostic bio­markers or therapeutic targets? Biochim Biophys Acta 2011; 1816: 89– 104. doi: 10.1016/ j.bbcan.2011.05.001.

4. Jol­ly C, Morimoto RI. Role of the teat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000; 92(19): 1564– 1572.

5. Parcel­lier A, Gurbuxani S, Schmitt E et al. Heat shock proteins, cel­lular chaperones that modulate mitochondrial cell death pathways. Biochem Biophysic Res Com­mun 2003; 304(3): 505– 512.

6. Thomas X, Campos L, Le QH et al. Heat shock proteins and acute leukemias. Hematology 2005; 10(3): 225– 235.

7. Schmitt E, Gehrmann M, Brunet M et al. Intracel­lular and extrecel­lular functions of heat shock proteins: repercus­sions in cancer therapy. J Leukoc Biol 2007; 81(1): 15– 27.

8. Gar­rido C, Brunet M, Didelot Y et al. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 2006; 5(22): 2592– 2601.

9. Westerheide SD, Morimoto RI. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 2005; 280(39): 33097– 33100.

10. Wu C. Heat shock transcription factors: structure and regulation. An­nu Rev Cell Dev Biol 1995; 11: 441– 469.

11. Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998; 12(24): 3788– 3796.

12. Nakai A, Tanabe M, Kawazoe Y et al. HSF4, a new member of the human heat shock factor family which lacks pro­perties of a transcriptional activator. Mol Cell Biol 1997; 17(1): 469– 481.

13. Tanabe M, Sasai N, Nagata K et al. The mam­malian HSF4 gene generates both an activator and a repres­sor of heat shock genes by alternative splicing. J Biol Chem 1999; 274(39): 27845– 27856.

14. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: dia­gnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005; 10(2): 86– 103.

15. Frejtag W, Zhang Y, Dai R et al. Heat shock factor-4 (HSF-4a) repres­ses basal transcription through interaction with TFIIF. J Biol Chem 2001; 276(18): 14685– 14694.

16. Zhang Y, Frejtag W, Dai R et al. Heat shock factor-4 (HSF-4a) is a repres­sor of HSF-1 mediated transcription. J Cell Biochem 2001; 82(4): 692– 703.

17. Nakai A. New aspects in the vertebrate heat shock factor system: Hsf3 and Hsf4. Cell Stress Chaperones 1999; 4(2): 86– 93.

18. Bu L, Jin Y, Shi Y et al. Mutant DNA-bind­ing domain of HSF4 is as­sociated with autosomal dominant lamel­lar and Marner cataract. Nat Genet 2002; 31(3): 276– 278.

19. Fujimoto M, Izu H, Seki K et al. HSF4 is required for normal cell growth and dif­ferentiation dur­ing mouse lens development. EMBO J 2004; 23(21): 4297– 4306.

20. Thomas X, Campos L, Mounier C et al. Expres­sion of heat shock proteins is as­siciated with major adverse prog­nostic factors in acute myeloid leukemia. Leuk Res 2005; 29(9): 1049– 1458.

21. Duval A, Olaru D, Campos L et al. Expres­sion and prognostic significance of heat shock proteins in myelodysplastic syndromes. Haematologica 2006; 91(5): 713– 714.

22. Guo F, Sigua C, Bali P et al. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cel­ls. Blood 2005; 105(3): 1246– 1255.

23. Lee JS, Lee JJ, Seo JS. HSP70 deficiency results in activation of c-Jun N-terminal kinase, extracel­lular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 2005; 280(8): 6634– 6641.

24. Stankiewicz AR, Lachapel­le G, Foo CP et al. HSP70 inhibits heat-induced apoptosis upstream of mitochondria by prevent­ing Bax translocation. J Biol Chem 2005; 280(46): 38729– 38739.

25. Beere HM, Wolf BB, Cain K et al. Heat shock protein 70 inhibits apoptosis by prevent­ing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000; 2(28): 469– 475.

26. Gyrd-Hansen M, Nylandsted J, Jaattela M. Heat shock protein 70 promotes cancer cell viability by safeguard­ing lysosomal integrity. Cell Cycle 2004; 3(12): 1484– 1485.

27. Bivik C, Rosdahl I, Ol­linger K. HSP70 protects against UVB induced apoptosis by prevent­ing release of cathepsins and cytochrome C in human melanocytes. Carcinogenesis 2007; 28(3): 537– 544.

28. Trinklein ND, Chen WC, Kingston RE et al. Transcriptional regulation and bind­ing of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes dur­ing thermal stress and dif­ferentiation. Cell Stress Chaperones 2004; 9(1): 21– 28.

29. Lan­neau D, de Thonel A, Maurel S et al. Apoptosis versus cell dif­ferentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 2007; 1(1): 53– 60.

30. Zermati Y, Gar­rido C, Amsel­lem S et al. Caspase activation is required for terminal erythroid dif­ferentiation. J Exp Med 2001; 193(2): 247– 254.

31. Ribeil JA, Zermati Y, Vandekerckhove J et al. HSP70 regulates erythropoiesis by prevent­ing caspase-3-mediated cleavage of GATA-1. Nature 2007; 445(7123): 102– 105.

32. Zhang Y, Wang JS, Chen Ll et al. Repres­sion of HSP90 beta gene by p53 in UV ir­radiation-induced apoptosis of Jurkat cel­ls. J Biol Chem 2004; 279(41): 42545– 42551.

33. Lewis J, Devin A, Mil­ler A et al. Disruption of HSP90 function results in degradation of the death domain kinase, receptor-interact­ing protein (RIP), and block­age of tumor necrosis factor-induced factor-kappaB activation. J Biol Chem 2000; 275(14): 10519– 10526.

34. Lan­neau D, Brunet M, Frisan E et al. Heat shock proteins: es­sencial proteins for apoptosis regulation. J Cell Mol Med 2008; 3(12): 743– 761. doi: 10.1111/ j.1582-4934.2008.00273.x.

35. Cardone MH, Roy N, Sten­nicke HR et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282(5392): 1318– 1321.

36. Ozes O, Mayo L, Gustin JA et al. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999; 401(6748): 82– 85.

37. Jego G, Hazoumé A, Seigneuric R et al. Target­ing heat shock proteins in cancer. Cancer Lett 2013; 332(2): 275– 285. doi: 10.1016/ j.canlet.2010.10.014.

38. Kampinga HH, Hageman J, Vos MJ et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009; 14(1): 105– 111. doi: 10.1007/ s12192-008-0068-7.

39. Sredhaar AS, Kalmar E, Csermely P et al. HSP90 isoforms: functions, expres­sion and clinical importance. FEBS Lett 2004; 562(1– 3): 11– 15.

40. Pearl LH, Prodromou C. Structure, function, and mechanism of the HSP90 molecular chaperone. Adv Protein Chem 2001; 59: 157– 186.

41. Onuoha SC, Coulstock ET, Gros­smann JG et al. Structural studies on the co-chaperone Hop and its complexes with HSP90. J Mol Biol 2008; 379(4): 732– 744. doi: 10.1016/ j.jmb.2008.02.013.

42. Schweinfest CW, Graber MW, Henderson KW et al. Clon­ing and sequence analysis of Hsp89alpha deltaN, a new member of theHsp90 gene family. Biochim Biophys Acta 1998; 1398(1): 18– 24.

43. Prodromou C, Panaretou B, Chohan S et al. The ATPase cycle of Hsp90 drives a molecular ‚clamp‘ via transient dimerization of the N-terminal domains. EMBO J 2000; 19(16): 4383– 4392.

44. Whitesell L, Lindquist SL. HSP90 and the chaperon­ing of cancer. Nat Rev Cancer 2005; 5(10): 761– 772.

45. Eustace BK, Sakurai T, Stewart JK et al. Functional proteomic screens reveal an es­sential extracel­lular role for HSP90 alpha in cancer cell invasivenes­s. Nat Cell Biol 2004; 6(6): 507– 514.

46. Jaattela M, Wis­s­ing K, Kokholm T et al. HSP70 exerts its anti-apoptotic function downstream of caspase-3 like proteases. EMBO J 1998; 17(21): 6124– 6134.

47. Raynes D, Guer­riero V Jr. Inhibition of HSP70 ATPase activity and protein renaturation by a novel HSP70-bind­ing protein. J Biol Chem 1998; 273(49): 32883– 32888.

48. Kabani M, McLel­lan C, Raynes DA et al. HspBP1, a homologue of the yeast Fes1 and Sls1proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett 2003; 531(2): 339– 342.

49. Sedlackova L, Spacek M, Hol­ler E et al. Heat-shock protein expres­sion in leukemia. Tumor Biol 2011; 32(1): 33– 44. doi: 10.1007/ s13277-010-0088-7.

50. Shi Y, Thomas JO. The transport of proteins into the nucleus requires the 70-kilodalton heta shock protein or its cytosolic cognate. Mol Cell Biol 1992; 12(5): 2186– 2192.

51. Song J, Takeda M, Morimoto RI. Bag1-HSP70 mediates a physiological stress signal­l­ing pathway that regulates Raf-1/ ERK and cell growth. Nat Cell Biol 2001; 3(3): 276– 282.

52. Gotz R, Kramer BW, Camarero G et al. BAG-1 haplo-insuf­ficiency impairs lung tumorigenesis. BMC Cancer 2004; 4: 85– 91.

53. Mjahed H, Girodon F, Fontenay M et al. Heat shock proteins in hematopoietic malignancies. Exp Cell Res 2012; 318(5): 1946– 1958. doi: 10.1016/ j.yexcr.2012.05.012.

54. Cortes JE, Talpaz M, Beran M et al. Philadelphia chromosome-negative chronic myelogenous leukemia with rear­rangement of the breakpoint cluster region. Long-term fol­low-up results. Cancer 1995; 75(2): 464– 470.

55. Deininger MW, Goldman JM, Melo JV. The molecular bio­logy of chronic myeloid leukemia. Blood 2000; 96(10): 3343– 3356.

56. Žáčková M, Moučková D, Lopotová T et al. HSP90 –  a potencial prognostic marker in CML. Blood Cel­ls Mol Dis 2013; 50(3): 184– 189. doi: 10.1016/ j.bcmd.2012.11.002.

57. Reikvam H, Hatfield KJ, Ersvaer E et al. Expres­sion profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly as­sociated with FLT3 mutation status –  consequences and potentials for pharmacological intervention. Br J Haematol 2011; 156(4): 468– 480. doi: 10.1111/ j.1365-2141.2011.08960.x.

58. Yao Q, Nishiuchi R, Kitamura T et al. Human leukemias with mutated FLT3 kinase are synergistical­ly sensitive to FLT3 and HSP90 inhibitors: the key role of the STAT5 signal transduction pathway. Leukemia 2005; 19(9): 1605– 1612.

59. Tian WL, He F, Fu X et al. High expres­sion of heat shock protein 90 alpha and its significance in human acute leukemia cel­ls. Gene 2014; 542(2): 122– 128. doi: 10.1016/ j.gene.2014.03.046.

60. Klikova K, Stefanikova A, Pilchova I et al. Dif­ferential impact of bortezomib on HL-60 and K562 cel­ls. Gen Phys Biophys 2015; 34(1): 33– 42. doi: 10.4149/ gpb_2014026.

61. Gamer J, Bujard H, Bukau B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 1992; 69(5): 833– 842.

62. Rodriguez F, Arsene-Ploetze F, Rist W et al. Molecular basis for regulation of the heat shock transcription factor sigma 32 by the DnaK and DnaJ chaperones. Mol Cell 2008; 32(3): 347– 358. doi: 10.1016/ j.molcel.2008.09.016.

63. Tyedmers J, Mogk A, Bukau B. Cel­lular strategies for control­l­ing protein aggregation. Nat Rev Mol Cell Biol 2010; 11(11): 777– 788. doi: 10.1038/ nrm2993.

64. Daugaard M, Rohde M, Jaattela M. The heat shock protein 70 family: highly homologous proteins with overlapp­ing and distinct functions. FEBS Lett 2007; 581(19): 3702– 3710.

65. Broadley SA, Hartl FU. The role of molecular chaperones in human misfold­ing diseases. FEBS Lett 2009; 583(16): 2647– 2653. doi: 10.1016/ j.febslet.2009.04.029.

66. Mos­ser DD, Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene 2004; 23(16): 2907– 2918.

67. Otvos L, Rogers ME, Consolvo PJ et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 2000; 39(46): 14150– 14159.

68. Reikvam H, Nepstad I, Sulen A et al. Increased antileukemic ef­fects in human acute myeloid leukemia by combin­ing HSP70 and HSP90 inhibitors. Expert Opin Investig Drugs 2013; 22(5): 551– 563. doi: 10.1517/ 13543784.2013.791280.

69. Yao Q, Nishiuchi R, Li Q et al. FLT3 expres­s­ing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-as­sociated kinases. Clin Cancer Res 2003; 9(12): 4483– 4493.

70. Nim­manapal­li R, O’Bryan E, Bhal­la K. Geldanamycin and its analogue 17-al­lylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and dif­ferentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 2001; 61(5): 1799– 1804.

71. Ray S, Lu Y, Kaufmann SH et al. Genomic mechanisms of p210BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resis­tance to paclitaxel-induced apoptosis. J Biol Chem 2004; 279(34): 35604– 35615.

72. As­simon V, Gil­lies AT, Rauch JN et al. Hsp70 protein complexes as drug targets. Curr Pharm Des 2013; 19(3): 404– 417.

73. Brodsky JL, Chiosis G. Hsp70 molecular chaperones: emerg­ing roles in human disease and identification of small molecule modulators. Curr Top Med Chem 2006; 6(11): 1215– 1225.

74. Reikvam H, Bren­ner AK, Nepstad I et al. Heat shock protein 70 –  the next chaperone to target in the treatment of human acute myelogenous leukemia? Expert Opin Ther Targets 2014; 18(8): 929– 944. doi: 10.1517/ 14728222.2014.924925.

75. McCon­nell RJ, McAlpine SR. Heat shock proteins 27, 40 and 70 as combinational and dual therapeutic cancer targets. Bioorg Med Chem Lett 2013; 23(7): 1923– 1928. doi: 10.1016/ j.bmcl.2013.02.014.

76. Leu JI, Pimkina J, Frank A et al. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36(1): 15– 27. doi: 10.1016/ j.molcel.2009.09.023.

77. Kaiser M, Kuhnl A, Reins J et al. Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia. Blood Cancer J 2011; 1(7): 1– 8. doi: 10.1038/ bcj.2011.28.

78. Yang M, Jiang G, Li W et al. Develop­ing aptamer probes for acute myelogenous leukemia detection and surface protein bio­marker discovery. J Hematol Oncol 2014; 7: 5. doi: 10.1186/ 1756-8722-7-5.

79. Stuart RK, Wei A, Lewis ID et al. A multicenter dose-find­ing randomized control­led phase IIb study of the aptamer AS1411 in patients with primary refractory or relapsed AML. J Clin Oncol 2010; 28 (Suppl 15): abstr. TPS279.

80. Sundaram P, Kurniawan H, Byrne EM et al. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 2013; 48(1– 2): 259– 271. doi: 10.1016/ j.ejps.2012.10.014.

81. Rerole AL, Gobbo J, De Thonel A et al. Peptides and aptamers target­ing HSP70: a novel approach for anticancer chemotherapy. Cancer Res 2011; 71(2): 484– 495. doi: 10.1158/ 0008-5472.CAN-10-1443.

82. Andersen MH. The target­ing of im­munosuppres­sive mechanisms in hematological malignancies. Leukemia 2014; 28(9): 1784– 1792. doi: 10.1038/ leu.2014.108.

83. Fal­louh H, Mahana W. Antibody to heat shock protein 70 (HSP70) inhibits human T-cell lymphoptropic virus type I (HTLV-I) production by transformed rabbit T-cell lines. Toxins 2012; 4(10): 768– 777. doi: 10.3390/ toxins4100768.

84. Stangl S, Themelis G, Friedrich L et al. Detection of ir­radiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors us­ing Hsp70 Fab fragment. Radiother Oncol 2011; 99(3): 313– 316. doi: 10.1016/ j.radonc.2011.05.051.

85. Braunstein MJ, Scott S­S, Scott CM et al. Antimyeloma ef­fects of the heat shock protein 70 molecular chaperone inhibitor MAL3-101. J Oncol 2011; 2011: 232037. doi: 10.1155/ 2011/ 232037.

86. Gaudio E, Paduano F, Ngankeu A et al. Heat shock protein 70 regulates Tcl1 expres­sion in leukemia and lymphomas. Blood 2013; 121(2): 351– 359. doi: 10.1182/ blood-2012-09-457374.

87. Kirszberg C, Rumjanek VM, Capel­la MA. Methylene blue is more toxic to erythroleukemic cel­ls than to normal peripheral blood mononuclear cel­ls: a pos­sible use in chemotherapy. Cancer Chemother Pharmacol 2005; 56(6): 659– 665.

88. Demand J, Alberti S, Patterson C et al. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase dur­ing chaperone/ proteasome coupling. Curr Biol 2001; 11(20): 1569– 1577.

89. Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2002; 2(1): 3– 24.

90. Reikvam H, Ersvaer E, Bruserud O et al. Heat shock protein 90 –  a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 2009; 9(6): 761– 776.

91. Jhaveri K, Taldone T, Modi S et al. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 2012; 1823(3): 742– 755. doi: 10.1016/ j.bbamcr.2011.10.008.

92. Neckers L. Chaperon­ing oncogenes: Hsp90 as a target of geldanamycin. Handb Exp Pharmacol 2006; 172: 259– 277.

93. Supko JG, Hickman RL, Grever MR et al. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 1995; 36(4): 305– 315.

94. Li Y, Zhang T, Schwartz SJ et al. New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat 2009; 12(1– 2): 17– 27. doi: 10.1016/ j.drup.2008.12.002.

95. Ron­nen EA, Kondagunta GV, Ishill N et al. A phase II trial of 17-(Al­lylamino)-17-demethoxygeldanamycin in patients with papil­lary and clear cell renal cell carcinoma. Invest New Drugs 2006; 24(6): 543– 546.

96. Dai C, Whitesell L. HSP90: a ris­ing star on the horizon of anticancer targets. Future Oncol 2005; 1(4): 529– 540.

97. Pacey S, Banerji U, Judson I et al. Hsp90 inhibitors in the clinic. Handb Exp Pharmacol 2006; 172: 331– 358.

98. Lancet JE, Gojo I, Burton M et al. Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 2010; 24(4): 699– 705. doi: 10.1038/ leu.2009.292.

99. Wu YC, Yen WY, Lee TC et al. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis. Toxicol Appl Pharmacol 2009; 236(2): 231– 238. doi: 10.1016/ j.taap.2009.02.003.

100. Didelot C, Lan­neau D, Brunet M et al. Anti-cancer therapeutic approaches based on intracel­lular and extracel­lular heat shock proteins. Curr Med Chem 2007; 14(27): 2839– 2847.

101. Peng C, Brain J, Hu Y et al. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppres­ses leukemic stem cel­ls. Blood 2007; 110(2): 678– 685.

102. Turjap M, Juřica J, Demlová R. Možný klinický přínos terapeutického monitorování hladin imatinibu v onkologii. Klin Onkol 2015; 28(2): 105– 111. doi: 10.14735/ amko2015105.

103. Barnes DJ, De S, van Hensbergen P et al. Dif­ferent target range and cytotoxic specificity of adaphostin and 17-al­lylamino-17-demethoxygeldanamycin in imatinib-resistant and sensitive cell lines. Leukemia 2007; 21(3): 421– 426.

104. Marcu MG, Chadli A, Bouhouche I et al. The heat shock protein 90 antagonist novobio­cin interacts with a previously unrecognized ATP-bind­ing domain in the carboxyl terminus of the chaperone. J Biol Chem 2000; 275(47): 37181– 37186.

105. Marcu MG, Schulte TW, Neckers L. Novobio­cin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 2000; 92(3): 242– 248.

106. Shelton SN, Shawgo ME, Matthews SB et al. KU135, a novel novobio­cin-derived C-terminal inhibitor of the 90-kDa heat shock protein, exerts potent antiproliferative ef­fects in human leukemic cel­ls. Mol Pharmacol 2009; 76(6): 1314– 1322. doi: 10.1124/ mol.109.058545.

107. Delmotte P, Delmotte-Plaque J. A new antifungal substance of fungal origin. Nature 1953; 171(4347): 344.

108. Soga S, Shiotsu Y, Akinaga S et al. Development of radicicol analogues. Curr Cancer Drug Targets 2003; 3(5): 359– 369.

109. Shiotsu Y, Neckers LM, Wortman I et al. Novel oxime derivatives of radicicol induce erythroid dif­ferentiation as­sociated with preferential G(1) phase accumulation against chronic myelogenous leukemia cel­ls through destabilization of Bcr-Abl with Hsp90 complex. Blood 2000; 96: 2284– 2291.

110. Chiosis G, Timaul MN, Lucas B et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth ar­rest and dif­ferentiation of breast cancer cel­ls. Chem Biol 2001; 8(3): 289– 299.

111. Boll B, Eltaib F, Reiners KS et al. Heat shock protein 90 inhibitor BIIB021 (CNF2024) depletes NF-kap­paB and sensitizes Hodgkin’s lymphoma cel­ls for natural kil­ler cel­l-mediated cytotoxicity. Clin Cancer Res 2009; 15(16): 5108– 5116. doi: 10.1158/ 1078-0432.CCR-09-0213.

112. Elfiky A, Saif MW, Beeram M et al. BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: phase I experience. J Clin Oncol 2008; 26: abstr. 2503.

113. Plescia J, Salz W, Xia F et al. Rational design of shepherdin, a novel anticancer agent. Cancer Cell 2005; 7(5): 457– 468.

114. Gyurkocza B, Plescia J, Raskett CM et al. Antileukemic activity of shepherdin and molecular diversity of HSP90 inhibitors. J Natl Cancer Inst 2006; 98(15): 1068– 1077.

115. Kaufmann SH, Karp JE, Litzow MR et al. Phase I and pharmacological study of cytarabine and tanespimycin in relapsed and refractory acute leukemia. Haematologica 2011; 96(11): 1619– 1626. doi: 10.3324/ haematol.2011.049551.

116. Siegel D, Jagan­nath S, Vesole HD et al. A phase 1 study of IPI-504 (retaspimycin hydrochloride) in patients with relapsed or relapsed and refractory multiple myeloma. Leuk Lymphoma 2011; 52(12): 2308– 2315. doi: 10.3109/ 10428194.2011.600481.

117. Richardson PG, Mitsiades CS, Laubach JP et al. Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol 2011; 152(4): 367– 379. doi: 10.1111/ j.1365-2141.2010.08360.x.

118. George P, Bali P, An­navarapu S et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cel­ls and AML cel­ls with activat­ing mutation of FLT-3. Blood 2005; 105(4): 1768– 1776.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie
Článek Editorial

Článek vyšel v časopise

Klinická onkologie

Číslo 1

2016 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#