#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Novelties in translational research of acute lymphoblastic leukaemia – selection from the European School of Haematology Conference


Authors: N. Čuřík
Authors‘ workplace: Ústav hematologie a krevní transfuze, Oddělení molekulární genetiky, Praha
Published in: Transfuze Hematol. dnes,28, 2022, No. 2, p. 79-83.
Category: Review/Educational Papers
doi: https://doi.org/10.48095/cctahd2022prolekare.cz3

Overview

The article presents selected communications from the 2nd Translational Research Conference: Acute Lymphoblastic Leukaemia organized by the European School of Haematology. It focuses on the role of new molecular bio­logy and genetic technologies in the recent significant advances in our understanding of the bio­logy of acute lymphoblastic leukaemia and in the improvement of disease dia­gnostics, prognostics and therapy management.

Keywords:

acute lymphoblastic leukaemia – MRD – rearrangements


Sources

1. Machová Poláková K, Čuřík N, Votavová H, et al. 25 let vývoje metod molekulární bio­logie a jejich uplatnění v hemato (onko) logii. Transfuze Hematol Dnes. 2019; 25: 34–42.

2. Čuřík N a Koblihová J. Vzdělávací workshop – uplatnění nových technologií v precizní medicíně CML a ALL. Transfuze Hematol Dnes. 2020; 26: 66–69.

3. Starý J. Novinky v léčbě akutní lymfoblastické leukemie u dětí. Remedia. 2020; 30: 62–64.

4. Vokurka S, Hugo J. Moderní molekuly v onkologii. Vydal Maxdorf s. r. o., Praha, 2019.

5. Büchler T a kol. Speciální onkologie. Vydal Maxdorf s. r. o., 2. vydání, Praha, 2020.

6. Chan LN, Murakami MA, Robinson ME, et al. Signalling input from divergent pathways subverts B cell transformation. Nature. 2020; 583: 845–851.

7. Hurtz C, Chan LN, Geng H, et al. Rationale for targeting BCL6 in MLL-rearranged acute lymphoblastic leukemia. Genes Dev. 2019; 33: 1265–1279.

8. Burt R, Dey A, Aref S, et al. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood. 2019; 134: 1415–1429.

9. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127: 2391–2405.

10. Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016; 7: 11790.

11. McClure BJ, Heatley SL, Kok CH, et al. Pre-B acute lymphoblastic leukaemia recurrent fusion, EP300-ZNF384, is associated with a distinct gene expression. Br J Cancer. 2018; 118: 1000–1004.

12. Gu Z, Churchman M, Roberts K, et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun. 2016; 7: 13331.

13. Li JF, Dai YT, Lilljebjörn H, et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci U S A. 2018; 115: E11711–E11720.

14. Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019; 51: 296–307.

15. Moorman AV, Schwab C, Winterman E, et al. Adjuvant tyrosine kinase inhibitor therapy improves outcome for children and adolescents with acute lymphoblastic leukaemia who have an ABL-class fusion. Br J Haematol. 2020; 191: 844–851.

16. Cairo G, Leoni V, Conter V, et al. Relapses and treatment-related events contributed equally to poor prognosis in children with ABL-class fusion positive B-cell acute lymphoblastic leukemia treated according to AIEOP-BFM protocols. Haematologica. 2020; 105: 1887–1894.

17. Brüggemann M, Kotrova M. Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation. Blood Adv. 2017; 1: 2456–2466.

18. Kim IS. Minimal residual disease in acute lymphoblastic leukemia: technical aspects and implications for clinical interpretation. Blood Res. 2020; 55: S19-S26.

19. Kotrova M, Trka J, Kneba M, et al. Is next-generation sequencing the way to go for residual disease monitoring in acute lymphoblasticl? Mol Dia­gn Ther. 2017; 21: 481–492.

20. Kotrova M, van der Velden VHJ, van Dongen JJM, et al. Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 2017; 52:  962–968.

21. Ruella M, Maus MV. Catch me if you can: Leukemia escape after CD19-Directed T cell immunotherapies. Comput Struct Biotechnol J. 2016; 14: 357–362.

22. Kotrova M, Darzentas N, Pott C, et al. Next-generation sequencing technology to identify minimal residual disease in lymphoid malignancies. Methods Mol Biol. 2021; 2185: 95–111.

23. Brüggemann M, Kotrová M, Knecht H, et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia. 2019; 33: 2241–2253.

24. Cazzaniga G, De Lorenzo P, Alten J, et al. Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies. Haematologica. 2018; 103: 107–115.

25. Hovorkova L, Zaliova M, Venn NC, et al. Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with  CML-like bio­logy. Blood. 2017; 129: 2771–2781.

26. Huang YJ, Kuo MC, Jaing TH, et al. Comparison of two quantitative PCR-based assays for detection of minimal residual disease in B-precursor acute lymphoblastic leukemia harboring three major fusion transcripts. J Mol Dia­gn. 2021; 23: 1373–1379.

Labels
Haematology Internal medicine Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#