#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Relations between Variability and Muscle Fatigue in Prototype Movements


Authors: I. Vlčková 1;  A. Krobot 2
Authors‘ workplace: Katedra rehabilitačních oborů, Fakulta zdravotních studií, Západočeská univerzita v Plzni 1;  Rehabilitační oddělení, Fakultní nemocnice Olomouc 2
Published in: Rehabil. fyz. Lék., 26, 2019, No. 2, pp. 68-73.
Category: Original Papers

Overview

Muscle fatigue represents wide-ranging phenomenon involving peripheral, central and also cognitive factors. At the central level, it leads to a collapse of neurotransmitter regulation and so the motor learning process can become significantly beneficial for restoration of the system under pressure. Because of ensuring variable behaviour, we enable the motor patterns to adapt effectively to specific requirements of an external and internal environment, without changing the objective or intention of the movement.

In our experiment we try to evaluate objectively the impact of cognitive functions on progression and regression of muscle fatigue. To evaluate this issue adequately, a physically demanding posture – a squat Wall Sit, has been chosen from a range of prototype movements. Wall Sit provides information about muscle capability depending on time and also offers findings about variability of the engagement of lower limbs muscle group during the beginning of muscle fatigue.

On the basis of the relation dogma between variability and muscle fatigue, we confirm the difference at the level of statistical significance (p < 0,05), when regarding the time during influence of cognitive load, the performance improved. The results of the experiment confirm a significant and at the same time positive impact of an external focus of attention, when we confirmed delay in the beginning of muscle fatigue.

Keywords:

central fatigue – cognitive task – attentional focus effect – squat Wall Sit


Sources

1. BOKSEM, M. A., MEIJMAN, T. F., LORIST, K. A., HICKS, A. L., NIELSON, K. A., HUNTER, A. K.: Effects of mental fatigue on attention. Cognitive Brain Research, 25, 2005, s. 195-200.

2. BOUTIN, A., PANZER, S., BLANDIN, Y.: Retrieval practice in motor learning. Human Movement Science, 32, 2013, s. 1201-1213.

3. BOYAS, S., GUÉVEL, A.: Neuromuscular fatigue in healthy muscle: Underlying factors and adaptation mechanisms. Annals of Physical and Rehabilitation Medicine, 54, 2011, s. 88-108.

4. BRAY, S. R., GRAHAM, J. D., GINIS K. M., HICKS, A. L.: Cognitive task performance causes impaired maximum force production in human hand flexor muscles. Biological Psychology, 89, 2012, s. 195-200.

5. CORTES, N., ONATE, J., MORRISON, S.: Differential effects of fatigue on movement variability. Gait, 39, 2014, s. 888-893.

6. DARWIN, CH.: O vzniku druhů přírodním výběrem. Praha, Academia, 2007.

7. DI GIULIO, C., DANIELE, F., TIPTON, CH. M.: Angelo Mosso and muscular fatigue: 116 years after the first congressof physiologists: IUPS commemoration. Advances in Physiology. 30, 2006, s. 51-56.

8. ENOKA, R. M., DUCHATEAU, J.: Muscle fatigue: what, why and how it influences muscle function. Journal of Physiology, 586, 2008, s. 11-23.

9. ENOKA, R. M., KWAK, Y., FLING, B. W., BERNARD, J. A.: Mechanisms of muscle fatigue: Central factors and task dependency. Journal of Electromyography and Kinesiology, 5, 1995, s. 141-149.

10. GANDEVIA, C. S.: Spinal and Supraspinal Factors in Human Muscle Fatigue. Physilogical Reviews, 81, 2001, s. 1726-1771.

11. GREIG, M., MARCHANT, D.: Speed dependant influence of attentional focusing instructions on force production and muscular activity during isokinetic elbow flexions. Human Movement Science, 81, 2014, s. 384-399.

12. GRUET, M., TEMESI, J., RUPP, T., LEVY, P., MILLET, G. Y., VERGES, S.: Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience, 231, 2013, s. 1726-1771.

13 KLOUS, M., DANNA DOS SANTOS, A., LATASH M. L.: Multi – muscle synergies in a dual postural task: evidence for the principle of superposition. Experimental Brain Research, 202, 2010, s. 457-471.

14. KONRAD, P.: The ABC of EMG. A Practical Introduction to Kinesiological Electromyography. USA, Scottsdale, 2005.

15. LOHSE, K. R., SHERWOOD, D. E.: Thinking about muscles: The neuromuscular effects of attentional focus on accuracy and fatigue. Acta Psychologica, 140, 2012, s. 236-245.

16. LOHSE, K. R., SHERWOOD, D. E., HEALY, A. F.: On the advantage of an external focus of attention: A benefit to learning or performance?. Human Movement Science, 33, 2014, s. 12- 134.

17. MARDER, E., BUCHER, D.: Central pattern generators and the control of rhythmic movements. Current Biology, 23, 2001, 986-996.

18. MONJO, F., FORESTIER, N.: Movement unpredictability and temporal constraints affect the integration of muscle fatigue information into forward models. Neuroscience, 277, 2014, s. 584-594.

19. MURATORI, M. L., LAMBERG, E. M., QUIN, L., DUFF, S. V.: Applying principles of motor learning and control to upper extremity rehabilitation. Journal of Hand Therapy, 26, 2013, s. 94-103.

20. PARK, J., ZATSIORSKY, V. M., LATASH M. L.: Optimality vs. variability: an example of multi – finger redundant tasks. Experimental Brain Research, 207, 2010, s. 119-132.

21. SHUMWAY-COOK, A., WOOLLACOTT, M. H.: Motor control: translating research into clinical practice. Philadelphia, Lippincott Williams & Wilkins, 2007.

22. SINGH, T., LATASH, M. L., GOROSTIAGA, E., IZQUIERDO, M.: Effects of muscle fatigue on multi – muscle synergies. Experimental Brain Research, 214, 2011, s. 335-350.

23. STERGIOU, N., HARBOURNE, R. T., CAVANAUGH, J. T.: Optimal movement variability: a new theoretical perspective for neurologic physical therapy. Journal of Neurologic Physical Therapy, 30, 2006, s. 120-129.

24. TOMCHUK, D.: Companion guide to measurement and evaluation for kinesiology. Sudbury, MA, Jones, 2011.

25. TROJAN, S., POKORNÝ, J.: Teoretický a klinický význam neuroplasticity. Bratislavské lékařské listy, 98, 2007, s. 667-673.

26. TURPIN, N. A., GUÉVEL, A., DURAND, S., HUG, F.: Fatigue-related adaptations in muscle coordination during a cyclic exercise in humans. The Journal of Experimental Biology, 214, 2011, s. 1-9.

27. VANČATA, V.: Primatologie. Díl 1. Evoluce, adaptace, ekologie a chování primátů – Prosimii a Platyrrhina. Praha, Univerzita Karlova v Praze, Pedagogická fakulta. 2003.

28. VANDEN NOVEN, M. L., PEREIRA, H. M., YOON, T., STEVENS, A. A., NIELSON, K. A., HUNTER, S. K.: Motor variability during sustained contractions increases with cognitive demand in older adults. Frontiers in Aging Neuroscience, 6, 2014, s. 1-140.

29. VAN DER STEEN, M. C., BONGERS, R. M.: Joint angle variability and co–variation in a reaching with a rod task. Experimental Brain Research, 208, 2011, s. 411-422.

Labels
Physiotherapist, university degree Rehabilitation Sports medicine

Article was published in

Rehabilitation and Physical Medicine

Issue 2

2019 Issue 2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#