#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cholangiocelulární karcinom z pohledu patologa


Authors: J. Hrudka;  E. Sticová
Authors‘ workplace: Ústav patologie 3. lékařské fakulty Univerzity Karlovy a Fakultní nemocnice Královské Vinohrady v Praze
Published in: Rozhl. Chir., 2022, roč. 101, č. 10, s. 478-487.
Category: Review
doi: https://doi.org/10.33699/PIS.2022.101.10.478–487

Overview

Cholangiocarcinoma is a relatively rare malignant tumor arising from the biliary epithelium of the intra- and extrahepatic bile ducts, the gallbladder, and the ampulla of Vater. This review article presents cholangiocarcinoma from the routine histopathological point of view. In addition to an overview of basic morphological, immunohistochemical, and molecular genetic characteristics of cholangiocarcinoma subtypes and precancerous lesions, the article is focused on intraoperative biopsies and on changes in the 8th edition of the TNM classification. Macroscopic and microscopic photo documentation and a review of recent literature are included.

Keywords:

cholangiocarcinoma – cholangiocellular carcinoma – intrahepatic – extrahepatic – perihilar


Sources

1. Nakanuma Y, Klimstra DS, Komuta M, et al. Intrahepatic cholangiocarcinoma. In: WHO classification of tumours editorial board: Digestive system tumours. Lyon (France) International Agency for Research on Cancer 2019:254–259.

2. Roa JC, Adsay NV, Arola J, et al. Carcinoma of the gallbladder. In: WHO classification of tumours editorial board: Digestive system tumours. Lyon (France): International Agency for Research on Cancer 2019:283–288.

3. Roa JC, Adsay NV, Arola J, et al. Carcinoma of the extrahepatic bile ducts. In: WHO classification of tumours editorial board. Digestive system tumours. Lyon (France): International Agency for Research on Cancer 2019:289–291.

4. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology 2011;54(1):173–184. doi:10.1002/ hep.24351.

5. Honsová E. Patologie jater a žlučových cest. In: Zámečník J. Patologie. LD, s.r.o. Prager publishing, 2019:550.

6. Kawashima H, Itoh A, Ohno E, et al. Diagnostic and prognostic value of immunohistochemical expression of S100P and IMP3 in transpapillary biliary forceps biopsy samples of extrahepatic bile duct carcinoma. J Hepatobiliary Pancreat Sci. 2013;20(4):441–447. doi:10.1007/s00534- 012-0581-z.

7. Oliverius M, Havlůj L, Hajer J, et al. Chirurgická léčba cholangiocelulárního karcinomu. Cas Lek Cesk. 2019;158(2):73–77.

8. Lowery MA, Ptashkin R, Jordan E, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: Potential targets for intervention. Clin Cancer Res. 2018;24(17):4154– 4161. doi:10.1158/1078-0432.CCR-18- 0078.

9. Kendall T, Verheij J, Gaudio E, et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 2019;39 Suppl 1:7–18. doi:10.1111/liv.14093.

10. Hrudka J, Prouzová Z, Mydlíková K, et al. FOXF1 as an immunohistochemical marker of hilar cholangiocarcinoma or metastatic pancreatic ductal adenocarcinoma. Single institution experience. Pathol Oncol Res. 2021;27:1609756. doi:10.3389/pore.2021.1609756.

11. Sempoux C, Kakar S, Kondo F, et al. Combined hepatocellular-cholangiocarcinoma and undifferentiated primary liver carcinoma. In: WHO classification of tumors editorial board: Digestive system tumors. 5th ed. Vol. 1. Lyon, France: International Agency for Research on Cancer 2019:60–262.

12. Nakanuma Y, Sato Y. Hilar cholangiocarcinoma is pathologically similar to pancreatic duct adenocarcinoma: suggestions of similar background and development. J Hepatobiliary Pancreat Sci. 2014;21(7):441–447. doi:10.1002/ jhbp.70.

13. Yeh YC, Lei HJ, Chen MH, et al. C-reactive protein (CRP) is a promising diagnostic immunohistochemical marker for intrahepatic cholangiocarcinoma and is associated with better prognosis. Am J Surg Pathol. 2017;41(12):1630–1641. doi:10.1097/PAS.0000000000000957.

14. Shahid M, Mubeen A, Tse J, et al. Branched chain in situ hybridization for albumin as a marker of hepatocellular differentiation: evaluation of manual and automated in situ hybridization platforms. Am J Surg Pathol. 2015; 9(1):25–34. doi:10.1097/ PAS.0000000000000343.

15. Gandou C, Harada K, Sato Y, et al. Hilar cholangiocarcinoma and pancreatic ductal adenocarcinoma share similar histopathologies, immunophenotypes, and development-related molecules. Hum Pathol. 2013;44(5):811–821. doi:10.1016/j.humpath.2012.08.004.

16. Lepreux S, Bioulac-Sage P, Chevet E. Differential expression of the anterior gradient protein-2 is a conserved feature during morphogenesis and carcinogenesis of the biliary tree. Liver Int. 2011;31(3):322–328. doi:10.1111/j.1478- 3231.2010.02438.x.

17. Nakanuma Y, Sato Y, Harada K, et al. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol. 2010;2(12):419– 427. doi:10.4254/wjh.v2.i12.419.

18. Hrudka J, Oliverius M, Gürlich R. Patologie cholangiocelulárního karcinomu. Cas Lek Cesk. 2019;158(2):57–63.

19. Carpino G, Cardinale V, Onori P, et al. Biliary tree stem/progenitor cells in glands of extrahepatic and intrahepatic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J Anat. 2012;220(2):186–199. doi:10.1111/ j.1469-7580.2011.01462.x.

20. Komuta M, Govaere O, Vandecaveye V, et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 2012;55(6):18761888. doi:10.1002/ hep.25595.

21. Basturk O, Aishima S, Esposito I. Biliary intraepithelial neoplasia. In: WHO classification of tumours editorial board. Digestive system tumours. Lyon (France): International Agency for Research on Cancer 2019:273–275.

22. Higuchi R, Yazawa T, Uemura S, et al. Highgrade dysplasia/carcinoma in situ of the bile duct margin in patients with surgically resected node-negative perihilar cholangiocarcinoma is associated with poor survival: a retrospective study. J Hepatobiliary Pancreat Sci. 2017;4(8):456–465. doi:10.1002/jhbp.481.

23. Nakanuma Y, Basturk O, Esposito I, et al. Intraductal papillary neoplasm of the bile ducts. In: WHO classification of tumours editorial board. Digestive system tumours. Lyon (France): International Agency for Research on Cancer 2019:279–282.

24. Basturk O, Aishima S, Esposito I. Intracholecystic papillary neoplasm. In: WHO classification of tumours editorial board. Digestive system tumours. Lyon (France): International Agency for Research on Cancer 2019:276–278.

25. Devaney K, Goodman ZD, Ishak KG. Hepatobiliary cystadenoma and cystadenocarcinoma. A light microscopic and immunohistochemical study of 70 patients. Am J Surg Pathol. 1994;18(11):1078–1091.

26. Kaimaktchiev V, Terracciano L, Tornillo L, et al. The homeobox intestinal differentiation factor CDX2 is selectively expressed in gastrointestinal adenocarcinomas. Mod Pathol. 2004;17(11):1392–1399. doi:10.1038/modpathol.3800205.

27. Suzuki S, Sakaguchi T, Yokoi Y, et al. Clinicopathological prognostic factors and impact of surgical treatment of mass-forming intrahepatic cholangiocarcinoma. World J Surg. 2002;26(6):687– 693. doi:10.1007/s00268-001-0291-1.

28. Cígerová V, Adamkov M, Drahošová S, et al. Immunohistochemical expression and significance of SATB2 protein in colorectal cancer. Ann Diagn Pathol. 2021;52:151731. doi:10.1016/j.anndiagpath. 2021.151731.

29. Zhang YJ, Chen JW, He XS, et al. SATB2 is a promising biomarker for identifying a colorectal origin for liver metastatic adenocarcinomas. EBioMedicine 2018;28:62–69. doi:10.1016/j.ebiom. 2018.01.001.

30. De Michele S, Remotti HE, Del Portillo A, et al. SATB2 in neoplasms of lung, pancreatobiliary, and gastrointestinal origins. Am J Clin Pathol. 2021;155(1):124–132. doi:10.1093/ajcp/aqaa118.

31. Tot T, Samii S. The clinical relevance of cytokeratin phenotyping in needle biopsy of liver metastasis. APMIS. 2003;111(12):1075-82. doi:10.1111/j. 1600-0463.2003.apm1111201.x.

32. Rullier A, Le Bail B, Fawaz R, et al. Cytokeratin 7 and 20 expression in cholangiocarcinomas varies along the biliary tract but still differs from that in colorectal carcinoma metastasis. Am J Surg Pathol. 2000;24(6):870–876. doi:10.1097/00000478-200006000- 00014.

33. Hrudka J, Fišerová H, Jelínková K, et al. Cytokeratin 7 expression as a predictor of an unfavorable prognosis in colorectal carcinoma. Sci Rep. 2021;11(1):17863. doi:10.1038/s41598-021-97480-4.

34. Clark BZ, Beriwal S, Dabbs DJ, et al. Semiquantitative GATA-3 immunoreactivity in breast, bladder, gynecologic tract, and other cytokeratin 7-positive carcinomas. Am J Clin Pathol. 2014;142(1):64–71. doi:10.1309/AJCP8H2VBDSCIOBF.

35. Gurel B, Ali TZ, Montgomery EA, et al. NKX3.1 as a marker of prostatic origin in metastatic tumors. Am J Surg Pathol. 2010;34(8):1097– 1105. doi:10.1097/PAS.0b013e3181e6cbf3.

36. Brierley JD, Gospodarowitz MK, Wittekind C. TNM klasifikace zhoubných novotvarů, osmé vydání. ÚZIS, Praha, 2018:97–104.

37. Švajdler P, Daum O, Dubová M, et al. Peroperačné vyšetrenie pankreasu, žlčníka, extrahepatálnych žlčových ciest, pečene a gastrointestinálneho traktu. Cesk Patol. 2018; 54(2):63–71.

38. Okazaki Y, Horimi T, Kotaka M, et al. Study of the intrahepatic surgical margin of hilar bile duct carcinoma. Hepatogastroenterology 2002;49(45):625–627.

39. Shiraki T, Kuroda H, Takada A, et al. Intraoperative frozen section diagnosis of bile duct margin for extrahepatic cholangiocarcinoma. World J Gastroenterol. 2018;24(12):1332–1342. doi:10.3748/wjg. v24.i12.1332.

40. Yamaguchi K, Shirahane K, Nakamura M, et al. Frozen section and permanent diagnoses of the bile duct margin in gallbladder and bile duct cancer. HPB (Oxford) 2005;7(2):135–138. doi:10.1080/13651820510028873.

41. Endo I, House MG, Klimstra DS, et al. Clinical significance of intraoperative bile duct margin assessment for hilar cholangiocarcinoma. Ann Surg Oncol. 2008;15(8):2104–2112. doi:10.1245/ s10434-008-0003-2.

42. Furukawa T, Higuchi R, Yamamoto M. Clinical relevance of frozen diagnosis of ductal margins in surgery of bile duct cancer. J Hepatobiliary Pancreat Sci. 2014;21(7):459–462. doi:10.1002/ jhbp.73.

43. Igami T, Nagino M, Oda K, et al. Clinicopathologic study of cholangiocarcinoma with superficial spread. Ann Surg. 2009;249(2):296–302. doi:10.1097/SLA. 0b013e318190a647.

44. Matthaei H, Lingohr P, Strässer A, et al. Biliary intraepithelial neoplasia (BilIN) is frequently found in surgical margins of biliary tract cancer resection specimens but has no clinical implications. Virchows Arch. 2015; 466(2):133–141. doi:10.1007/ s00428-014-1689-0.

45. Ke Q, Wang B, Lin N, et al. Does highgrade dysplasia/carcinoma in situ of the biliary duct margin affect the prognosis of extrahepatic cholangiocarcinoma? A meta-analysis. World J Surg Oncol. 2019;17(1):211. doi:10.1186/s12957-019- 1749-7.

46. Tone K, Kojima K, Hoshiai K, et al. Utility of intraoperative cytology of resection margins in biliary tract and pancreas tumors. Diagn Cytopathol. 2015;43(5):366–373. doi:10.1002/dc.23240.

47. Konishi M, Iwasaki M, Ochiai A, et al. Clinical impact of intraoperative histological examination of the ductal resection margin in extrahepatic cholangiocarcinoma. Br J Surg. 2010;97(9):1363–1368. doi:10.1002/bjs.7122. PMID: 20632323.

48. Sakamoto Y, Kosuge T, Shimada K, et al. Prognostic factors of surgical resection in middle and distal bile duct cancer: an analysis of 55 patients concerning the significance of ductal and radial margins. Surgery 2005;137(4):396–402. doi:10.1016/j.surg.2004.10.008.

49. Bhalla A, Mann SA, Chen S, et al. Histopathological evidence of neoplastic progression of von Meyenburg complex to intrahepatic cholangiocarcinoma. Hum Pathol. 2017;67:217–224. doi:10.1016/j. humpath.2017.08.004.

50. Rakha E, Ramaiah S, McGregor A. Accuracy of frozen section in the diagnosis of liver mass lesions. J Clin Pathol. 2006;59(4):352–354. doi:10.1136/jcp. 2005.029538.

Labels
Surgery Orthopaedics Trauma surgery Gastroenterology and hepatology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#