#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Non-hematogenic activity of erythropoietin


Authors: Luboslav Stárka;  Michaela Dušková
Authors‘ workplace: Endokrinologický ústav, Praha
Published in: Vnitř Lék 2019; 65(7-8): 515-519
Category:

Overview

The cytokine erythropoietin is the main hemopoietic factor synthesized mainly by the kidney. However, erythro­poietin and its receptors are expressed in several tissues and exert pleiotropic activities also in nonhemopoietic tissues. Erythropoietin has an antiapoptotic activity and plays a potential neuroprotective, nefroprotective and cardioprotective role against ischemia and other type of injury. Erythropoietin is also involved in angiogenesis, neurogenesis, and the immune response. It can prevent metabolic alterations, vascular and neuronal degeneration, and inflammatory cell activation. Erythropoietin reduces hyperglycaemia and retards proliferative retinopathy in diabetic patients. Consequently, erythropoietin may be of therapeutic value for a variety of disorders. This short review provides an insight into the nonhemopoietic role of erythropoietin and its mechanisms of action. For elimination of polycythaemia after erythropoietin administration analogues without haematopoietic activity were prepared and tested in animals and in some cases also evaluated in clinical trials.

Keywords:

diabetes – energetic metabolism – erythropoietin – pleitropic action – proliferative retinopathy – tissue protective effect


Sources
  1. Bartnicki P, Kowalczyk M, Rysz J. The influence of the pleiotropic action of erythropoietin and its derivatives on nephroprotection. Med Sci Monit 2013; 19: 599–605. Dostupné z DOI: <http://dx.doi.org/10.12659/MSM.889023>.
  2. Jelkmann W, Wagner K. Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol 2004; 83(11): 673–686. Dostupné z DOI: <http://dx.doi.org/10.1007/s00277–004–0911–6>.
  3. Pulman KG, Smith M, Mengozzi M et al. The erythropoietin-derived peptide ARA290 reverses mechanical allodynia in the neuritis model. Neuroscience 2013; 233: 174–183. Dostupné z DOI: <http://dx.doi.org/10.1016/j.neuroscience.2012.12.022>.
  4. Zhang Y, Chen W, Wu Y et al. Renoprotection and mechanisms of erythropoietin and Its derivatives Helix B surface peptide in kidney injuries. Curr Protein Pept Sci 2017; 18(12): 1183–1190. Dostupné z DOI: <http://dx.doi.org/10.2174/1389203717666160909144436>.
  5. Brines M, Cerami A. Erythropietin-mediated tissue protection: reducing collateral damage from the primary injury response. J Int Med 2008; 264(5): 405–432. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1365–2796.2008.02024.x>.
  6. Sabbatini M, Bosetti M, Borrone A et al. Erythropoietin stimulation of human adipose tissue for therapeutic refilling releases protective cytokines. J Tissue Eng 2016; 7: 2041731416671278. Dostupné z DOI: <http://dx.doi.org/10.1177/2041731416671278>.
  7. Tankiewicz-Kwedlo A, Hermanowicz JM, Domaniewski T et al. Simultaneous use of erythropoietin and LFM-A13 as a new therapeutic approach for colorectal cancer. Br J Pharmacol 2018; 175(5): 743–762. Dostupné z DOI: <http://dx.doi.org/10.1111/bph.14099>.
  8. Zhang H, Fang X, Huang D et al. Erythropoietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol Med Rep 2018; 17(1): 264–272. Dostupné z DOI: <http://dx.doi.org/10.3892/mmr.2017.7873>.
  9. Li XB, Zheng W, Ning YP et al. Erythropoietin for cognitive deficits associated with schizophrenia, bipolar disorder, and major depression: A systematic review. Pharmacopsychiatry 2018 ; 51(3): 100–104. Dostupné z DOI: <http://dx.doi.org/10.1055/s-0043–114670>.
  10. Weir MR, Pergola PE, Agarwal R et al. A comparison of the safety and efficacy of HX575 (Epoetin alfa proposed biosimilar) with Epoetin alfa in patients with end-stage renal disease. Am J Nephrol 2017; 46(5): 364–370. Dostupné z DOI: <http://dx.doi.org/10.1159/000481736>.
  11. Imamura R, Isaka Y, Sandoval RM et al. A nonerythropoietic derivative of erythropoietin inhibits tubulointerstitial fibrosis in remnant kidney. Clin Exp Nephrol 2012; 16(6): 852–862. Dostupné z DOI: <http://dx.doi.org/10.1007/s10157–012–0647-x>.
  12. Williams ME, Mittman N, Ma L et al. The glycemic indices in dialysis evaluation (GIDE) study: Comparative measures of glycemic control in diabetic dialysis patients. Hemodial Int 2015; 19(4): 562–571. Dostupné z DOI: <http://dx.doi.org/10.1111/hdi.12312>.
  13. McGill JB, Bell DS. Anemia and the role of erythropoietin in diabetes. J Diabetes Complications 2006; 20(4): 262–272. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jdiacomp.2005.08.001>.
  14. Thomas MC, Cooper ME, Tsalamandris C et al. Anemia with impaired erythropoietin response in diabetic patients. Arch Intern Med 2005; 165(4): 466–469. Dostupné z DOI: <http://dx.doi.org/10.1001/archinte.165.4.466>.
  15. Kodo K, Sugimoto S, Nakajima H et al. Erythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in diet-induced obese mice. PLoS One 2017; 12(3): e0173661. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0173661>.
  16. Wang L, Teng R, Di L et al. PPARα and Sirt1 mediate erythropoietin action in increasing metabolic activity and browning of white adipocytes to protect against obesity and metabolic disorders. Diabetes 2013; 62(12): 4122–4131. Dostupné z DOI: <http://dx.doi.org/10.2337/db13–0518>.
  17. Mikolás E, Cseh J, Pap M et al. Effects of erythropoietin on glucose metabolism. Horm Metab Res 2012; 44(4): 279–285. Dostupné z DOI: <http://dx.doi.org/10.1055/s-0032–1301901>.
  18. Dey S, Scullen T, Noguchi CT. Erythropoietin negatively regulates pituitary ACTH secretion. Brain Res 2015; 1608: 14–20. Dostupné z DOI: <http://dx.doi.org/10.1016/j.brainres.2015.02.052>.
  19. Vinberg M, Højman P, Pedersen BK et al. Effects of erythropoietin on body composition and fat-glucose metabolism in patients with affective disorders. Acta Neuropsychiatr 2018; 30(6): 342–349.
  20. Kuo SC, Li Y, Cheng KC et al. Investigation of the pronounced erythropoietin-induced reduction in hyperglycemia in type 1-like diabetic rats. Endocr J 2018; 65(2): 181–191. Dostupné z DOI: <http://dx.doi.org/10.1507/endocrj.EJ17–0353>.
  21. Dey S, Noguchi CT. Erythropoietin and hypothalamic-pituitary axis. Vitam Horm 2017; 105: 101–120. Dostupné z DOI: <http://dx.doi.org/10.1016/bs.vh.2017.02.007>.
  22. Scully MS, Ort TA, James IE et al. A novel EPO receptor agonist improves glucose tolerance via glucose uptake in skeletal muscle in a mouse model of diabetes. Exp Diabetes Res 2011; 2011: 910159. Dostupné z DOI: <http://dx.doi.org/10.1155/2011/910159>.
  23. Hojman P, Brolin C, Gissel H et al. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles. PLoS One 2009; 4(6): e5894. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0005894>.
  24. Meng R, Zhu D, Bi Y et al. Erythropoietin inhibits gluconeogenesis and inflammation in the liver and improves glucose intolerance in high-fat diet-fed mice. PLoS One 2013; 8(1): e53557. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0053557>.
  25. Ge Z, Zhang P, Hong T et al. Erythropoietin alleviates hepatic insulin resistance via PPARγ-dependent AKT activation. Sci Rep 2015; 5: 17878. Dostupné z DOI: <http://dx.doi.org/10.1038/srep17878>.
  26. Alnaeeli M, Raaka BM, Gavrilova O et al. Erythropoietin signaling: a novel regulator of white adipose tissue inflammation during diet-induced obesity. Diabetes 2014; 63(7): 2415–2431. Dostupné z DOI: <http://dx.doi.org/10.2337/db13–0883>.
  27. Chen LN, Sun Q, Liu SQ et al. Erythropoietin improves glucose metabolism and pancreatic β-cell damage in experimental diabetic rats. Mol Med Rep 2015; 12(4): 5391–5398. Dostupné z DOI: <http://dx.doi.org/10.3892/mmr.2015.4006>.
  28. Shah R, Ye C, Woo M, et al. Erythropoietin and glucose homeostasis in women at varying degrees of future diabetic risk. J Diabetes Complications 2015; 29(1): 26–31. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jdiacomp.2014.09.005>.
  29. Zhang C, Wang H, Nie J et al. Protective factors in diabetic retinopathy: focus on blood-retinal barrier. Discov Med 2014; 18(98): 105–112.
  30. Hartnett ME, Penn JS. Mechanisms and management of retinopathy of prematurity. N Engl J Med 2012; 367(26): 2515–2526. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMra1208129>.
  31. Watanabe D, Suzuma K, Matsui S et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 2005; 353(8): 782–792. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa041773>.
  32. Wang Q, Gorbey S, Pfister F et al. Long-term treatment with suberythropoietic Epo is vaso- and neuroprotective in experimental diabetic retinopathy. Cell Physiol Biochem 2011; 27(6): 769–782. Dostupné z DOI: <http://dx.doi.org/10.1159/000330085>.
  33. Lei X, Zhang J, Shen J et al. EPO attenuates inflammatory cytokines by Muller cells in diabetic retinopathy. Front Biosci (Elite Ed) 2011; 3: 201–211.
  34. Reid G, Lois N. Erythropoietin in diabetic retinopathy. Vision Res 2017; 139: 237–242. Dostupné z DOI: <http://dx.doi.org/10.1016/j.visres.2017.05.010>.
  35. Zhang C, Yang C, Zhu T. From erythropoietin to its peptide derivatives: smaller but stronger. Curr Protein Pept Sci 2017; 18(12): 1191–1194. Dostupné z DOI: <http://dx.doi.org/10.2174/1389203717666160909130006>.
  36. Xu X, Cai Y, Yu Y. Molecular mechanism of the role of carbamyl erythropoietin in treating diabetic retinopathy rats. Exp Ther Med 2018; 16(1): 305–309. Dostupné z DOI: <http://dx.doi.org/10.3892/etm.2018.6167>.
  37. Brines M, Dunne AN, van Velzen M et al. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol Med 2015; 20: 658–666. Dostupné z DOI: <http://dx.doi.org/10.2119/molmed.2014.00215>.
  38. Collino M, Benetti E, Rogazzo M, et al. A non-erythropoietic peptide derivative of erythropoietin decreases susceptibility to diet-induced insulin resistance in mice. Br J Pharmacol 2014; 171(24): 5802–5815. Dostupné z DOI: <http://dx.doi.org/10.1111/bph.12888>.
Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#