#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Nárůst prevalence celiakie – kde hledat odpovědi?


Authors: M. Šťastná 1,2;  A. Norek 1;  J. Řádková 3;  M. Sluková 4;  M. Hrunka 5,6;  P. Jabandžiev 5,6;  L. Janda 1
Authors‘ workplace: Výzkumný ústav veterinárního lékařství, Brno 2Masarykova univerzita, Ústav biochemie, Brno 3Nemocnice AGEL Šternberk, Šternberk 1;  Ústav sacharidů a cereálií, Vysoká škola chemicko-technologická v Praze, Praha 4;  Pediatrická klinika Fakultní nemocnice Brno, Brno 5;  Lékařská fakulta Masarykovy Univerzity, Brno 6
Published in: Epidemiol. Mikrobiol. Imunol. 72, 2023, č. 3, s. 172-183
Category: Review Article

Overview

Celiac disease or gluten-sensitive enteropathy is a relevant health concern in today’s world. Three prerequisites need to be met to trigger the disease, namely a genetic predisposition, gluten consumption, and environmental factors. Retrospective studies conducted across all age groups have ruled out the possibility that improved diagnostic methods were behind the increased prevalence. Since the genetic predisposition is more or less constant in the population, it is assumed that external factors may play a major role in this increase. Although it is generally believed that modern wheat varieties are to be blamed for the increase in gluten intolerance-related diseases, this assumption is refuted based on the analysis of the current and 100-year-old varieties. However, the increased prevalence could be related to modern lifestyles, changes in food preparation technology or composition, disruption of the intestinal barrier in viral disease, and other factors leading to intestinal dysbiosis. A possible preventive strategy in predisposed individuals could be the avoidance of gluten from the diet when ill, especially with a viral infection. This article openup a new perspective on the currently common autoimmune disease.

Keywords:

autoimmune diseases – causes of increasing prevalence – viruses as disease triggers


Sources
  1. Anderson CM, Frazer AC, French JM, et al. Coeliac disease: gastro-intestinal studies and the effect of dietary wheat flour. The Lancet, 1952;259.6713:836–842.
  2. Agardh D, Matthias T, Wusterhausen P, et al. Antibodies against neo-epitope of microbial and human transglutaminase complexes as biomarkers of childhood celiac disease. Clin Exp Immunol, 2020;199(3):294–302.
  3. Auricchio R, Cielo D, de Falco R, et al. Respiratory Infections and the Risk of Celiac Disease. Pediatrics, 2017;140(4):e20164102.
  4. Bach JF. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nature Reviews Immunology, 2018;18(2):105–120.
  5. Berger E, Buergin-Wolff A, Freudenberg E. Diagnostic value of the demonstration of gliadin antibodies in celiac disease. Klinische Wochenschrift, 1964;42:788–790.
  6. Berti C, Roncoroni L, Falini ML, et al. Celiac-related properties of chemically and enzymatically modified gluten proteins. J Agric Food Chem, 2007;21;55(6):2482–2488.
  7. Bian X, Tu P, Chi L, et al. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 2017;107(Pt B):530–539.
  8. Bouziat R, Hinterleitner R, Brown JJ, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science, 2017;356(6333):44–50.
  9. Brown JJ, Jabri B, Dermody TS. A viral trigger for celiac disease. PLoS pathogens, 2018;14(9):e1007181.
  10. Bruno C, Paparo L, Pisapia L, et al. Protective effects of the postbiotic deriving from cow’s milk fermentation with L. paracasei CBA L74 against Rotavirus infection in human enterocytes. Scientific Reports, 2022;12(1):6268.
  11. Buccigrossi V, Laudiero G, Russo C, et al. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes. PloS one, 2014;9(6): e99830.
  12. Buccigrossi V, Poeta M, Cioffi V, et al. Lacticaseibacillus rhamnosus GG counteracts rotavirus-induced ion secretion and enterocyte damage by inhibiting oxidative stress and apoptosis through specific effects of living and postbiotic preparations. Frontiers in Cellular and Infection Microbiology, 2022;12:854989.
  13. Cabrera-Chávez F, Rouzaud-Sández O, Sotelo-Cruz N, Calderón de la Barca AM. Transglutaminase treatment of wheat and maize prolamins of bread increases the serum IgA reactivity of celiac disease patients. Journal of agricultural and food chemistry, 2008;56(4): 1387–1391.
  14. Caio G, Volta U, Sapone A, et al. Celiac disease: a comprehensive current review. BMC Medicine, 2019;17(1):142. doi:10.1186/ s12916-019-1380-z.
  15. Caputo I, Lepretti M, Martucciello S, Esposito C. Enzymatic strategies to detoxify gluten: implications for celiac disease. Enzyme research, 2010.
  16. Clemente MG, De Virgiliis S, Kang JS, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut, 2003;52(2):218–223.
  17. Comino I, de Lourdes Moreno M, Real A, et al. The gluten-free diet: testing alternative cereals tolerated by celiac patients. Nutrients, 2013;5(10):4250–4268.
  18. Corsello G, Carta M, Marinello, et al. Preventive effect of cow’s milk fermented with Lactobacillus paracasei CBA L74 on common infectious diseases in children: A multicenter randomized controlled trial. Nutrients, 2017;9(7):669.
  19. Di Cagno R, De Angelis M, Auricchio S, et al. Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Applied and environmental mikrobiology, 2004;70(2):1088–1096.
  20. Dicke WK, Weijers HA, Kamer JH VD. “Coeliac disease the presence in wheat of a factor having a deleterious effect in cases of coeliac disease.” Acta paediatrica, 1953;42.1:34–42.
  21. Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nature Medicine volume, 1997;3:797–801.
  22. Drago S, El Asmar R, Di Pierro M, et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scandinavian journal of gastroenterology, 2006;41(4):408–419.
  23. El Asmar R, Panigrahi P, Bamford P, et al. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology, 2002;123(5):1607–1615.
  24. Fanconi G. Der intestnal infantlismus und ähnliche formen der chronischenver-dauungstörung: Ihre behandlung mit früchten und gemüsen. Berlin: S. Karger; 1928.
  25. Fasano A. Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology, 2012;42(1):71–78. doi:10.1007/ s12016-011-8291-x.
  26. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res, 2020;9:F1000 Faculty Rev-69.
  27. Frič P, Nevoral J. Cílený screening celiakie. Interní medicína pro praxi, 2009;11(11):484–487.
  28. Frühauf P, Bronský J, Dědek P, et al. Celiakie-doporučený postup pro diagnostiku a terapii u dětí a dospívajících. Pediatrie pro praxi, 2016;17(3):i-vii.
  29. Gabrovská D, Hálová I, Chrpová MID, et al. Obiloviny v lidské výživě. Praha: Potravinářská komora České republiky, Česká technologická platforma pro potraviny, 2015.
  30. García Nieto VM. A History of Celiac Disease. In Rodrigo L, Pena A.S. (eds.). Celiac Disease and Non-Celiac Gluten Sensitivity. Barcelona, Spain: OmniaScience. 2014:45–59.
  31. Gee S. J. “On the coeliac affection”. St Bartholomew’s Hospital Report, 1888;4:17–20.
  32. Gerrard JA, Sutton KH. Addition of transglutaminase to cereal products may generate the epitope responsible for coeliac disease. Trends in Food Science & Technology, 2005;16(11):510–512.
  33. Giraldo P, Benavente E, Manzano-Agugliaro F, Gimenez E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy, 2019;9(7):352.
  34. Grausgruber H. Content of the immunodominant 33-mer peptide from α2-gliadin in common and ancient wheat flours determined by the G12 sandwich ELISA, 2018.
  35. Guandalini S. Historical perspective of celiac disease. In Fasano A., Troncone R., Branski D (eds.). Frontiers in celiac disease. Pediatric and Adolescent Medicine, 2008;12:1–11. doi:10.1159/000128267.
  36. Hancock J. F. Plant evolution and the origin of crop species. CABI: 2012.
  37. Heil A, Ohsam J, van Genugten B, et al. Microbial transglutaminase used in bread preparation at standard bakery concentrations does not increase immunodetectable amounts of deamidated gliadin. Journal of agricultural and food chemistry, 2017;65(32):6982–6990.
  38. Hoffmanová I. Celiakie. Praha: Mladá fronta, 2019. Edice postgraduální medicíny. ISBN 978-80-204-5414-0.
  39. Hrncirova L, Hudcovic T, Sukova E, et al. Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia Microbiol, 2019;64:497–508.
  40. Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 2015;519(7541):92–96. doi:10.1038/nature14232.
  41. Chorzelski TP, Beutner EH, Sulej J, et al. IgA anti-endomysium antibody. A new immunological marker of dermatitis herpetiformis and coeliac disease. British Journal of Dermatology, 1984;111(4):395–402.
  42. Kagnoff MF, Austin RK, Hubert JJ, Bernardin JE, Kasarda DD. Possible role for a human adenovirus in the pathogenesis of celiac disease. J Exp Med, 1984;1;160(5):1544–1557. doi: 10.1084/ jem.160.5.1544. PMID: 6491604; PMCID: PMC2187489.
  43. Kemppainen KM, Lynch KF, Liu E, et al. Factors That Increase the Risk of Celiac Disease Autoimmunity After a Gastrointestinal Infection in Early Life. Clin Gastroenterol Hepatol, 2017;15:694– 702. doi: 10.1016/j.cgh.2016.10.033.
  44. Kieliszek M, Misiewicz A. Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologica, 2014;59(3):241–250.
  45. Kiszonas AM, Morris CF. Wheat breeding for quality: A historical review. Cereal Chemistry, 2018;95(1):17–34.
  46. Klöck C, DiRaimondo TR, Khosla C. Role of transglutaminase 2 in celiac disease pathogenesis. Seminars in immunopathology, 2012;34(4):513–522.
  47. Kondrashova A, Mustalahti K, Kaukinen K, et al. Lower economic status and inferior hygienic environment may protect against celiac disease. Annals of Medicine, 2008;40(3):223–231.
  48. Kostovcikova K, Coufal S, Galanova N, et al. Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice. Frontiers in immunology, 2019;10:919.
  49. Kucek LK, Veenstra LD, Amnuaycheewa P, Sorrells ME. A grounded guide to gluten: how modern genotypes and processing impact wheat sensitivity. Comprehensive Reviews in Food Science and Food Safety, 2015;14(3):285–302.
  50. Lata J, Juránková J. Střevní mikroflóra, slizniční bariéra a probiotika u některých interních chorob. Interní Med, 2011;13(2):63–69.
  51. Leonard MM, Valitutti F, Karathia H, Pujolassos M, Kenyon V, Fanelli B, Troisi J, Subramanian P, Camhi S, Colucci A, Serena G, Cucchiara S, Trovato CM, Malamisura B, Francavilla R, Elli L, Hasan NA, Zomorrodi AR, Colwell R, Fasano A; CD-GEMM Team. Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci U S A, 2021;20;118(29):e2020322118. doi: 10.1073/ pnas.2020322118. PMID: 34253606; PMCID: PMC8307711.
  52. Lindfors K, Lin J, Lee HS, Hyöty H, Nykter M, Kurppa K, Liu E, Koletzko S, Rewers M, Hagopian W, Toppari J, Ziegler AG, Akolkar B, Krischer JP, Petrosino JF, Lloyd RE, Agardh D; TEDDY Study Group. Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: the TEDDY study. Gut, 2020;69(8):1416–1422. doi: 10.1136/gutjnl-2019-319809. Epub 2019 Nov 19. PMID: 31744911; PMCID: PMC7234892.
  53. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome medicine, 2016;8(1):1–11.
  54. Lohi S, Mustalahti K, Kaukinen K, Laurila K, Collin P, Rissanen H, Mäki M. Increasing prevalence of coeliac disease over time. Alimentary pharmacology & therapeutics, 2007;26(9):1217–1225.
  55. Lu FC. Acceptable daily intake: inception, evolution, and application. Regul Toxicol Pharmacol, 1988;8(1):45–60. doi: 10.1016/0273-2300(88)90006-2. PMID: 3368586.
  56. M’hir S, Ziadi M, Chammem N, Hamdi M. Gluten proteolysis as alternative therapy for celiac patients: A mini-review. African Journal of Biotechnology, 2012;11(29).
  57. Marild K, Kahrs CR, Tapia G, Stene L, Stordal K. Infections and Risk of Celiac Disease in Childhood: A Prospective Nationwide Cohort Study. Am J Gastroenterol, 2015;110:1475–1484. doi: 10.1038/ajg.2015.287
  58. Mohajeri MH, Brummer RJ, Rastall RA, Weersma RK, Harmsen HJ, Faas M, Eggersdorfer M. The role of the microbiome for human health: from basic science to clinical applications. European journal of nutrition, 2018;57:1–14.
  59. Moore MM, Heinbockel M, Dockery P, Ulmer HM, Arendt EK. Network formation in gluten-free bread with application of transglutaminase. Cereal chemistry, 2006;83(1):28–36.
  60. Mörkl S, Lackner S, Meinitzer A, Mangge H, Lehofer M, Halwachs B, Holasek SJ. Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. European journal of nutrition, 2018;57:2985–2997.
  61. Paulley JW. Observations on the aetiology of idiopathic steatorrhoea. British medical journal, 1954;2(4900):1318.
  62. Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica, 2019;66(1):1–12.
  63. Rauhavirta T, Hietikko M, Salmi T, Lindfors K. Transglutaminase 2 and transglutaminase 2 autoantibodies in celiac disease: a review. Clinical reviews in allergy & immunology, 2019;57(1):23–38.
  64. Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, et al. Food additives, contaminants and other minor components: effects on human gut microbiota-a review. Journal Physiology and Biochemistry, 2018;74(1):69–83. doi:10.1007/s13105-017-0564-2.
  65. Rubio-Tapia A, Kyle RA, Kaplan EL, Johnson DR, Page W, Erdtmann F, Brantner TL, Kim WR, Phelps TK, Lahr BD, Zinsmeister AR, Melton LJ 3rd, Murray JA. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology, 2009;137(1):88–93. doi: 10.1053/j.gastro.2009.03.059. Epub 2009 Apr 10. PMID:19362553; PMCID: PMC2704247.
  66. Sánchez D, Hoffmanová I, Szczepanková A, Hábová V, Tlaskalová-Hogenová H. Contribution of infectious agents to the development of celiac disease. Microorganisms, 2021;9(3):547.
  67. Scarnato L, Gadermaier G, Volta U, De Giorgio R, Caio G, Lanciotti R, Del Duca S. Immunoreactivity of Gluten-Sensitized Sera Toward Wheat, Rice, Corn, and Amaranth Flour Proteins Treated With Microbial Transglutaminase. Front Microbiol, 2019;10:470. doi: 10.3389/fmicb.2019.00470. PMID: 30972033; PMCID: PMC6445063.
  68. Scherf KA, Brockow K, Biedermann T, Koehler P, Wieser H. Wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy, 2016;46(1):10–20. doi: 10.1111/cea.12640. PMID: 26381478.
  69. Scherf KA, Lindenau AC, Valentini L, et al. Cofactors of wheat-dependent exercise-induced anaphylaxis do not increase highly individual gliadin absorption in healthy volunteers. Clinical and Translational Allergy, 2019;9:19. doi:10.1186/s13601-019-0260-0.
  70. Sievers S, Rohrbach A, Beyer K. Wheat-induced food allergy in childhood: ancient grains seem no way out. Eur J Nutr, 2020;59(6):2693–2707. doi: 10.1007/s00394-019-02116-z. Epub2019 Oct 25. PMID: 31654113.
  71. Singh P, Arora A, Strand TA, et al. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clinical Gastroenteroly and Hepatology, 2018;16(6):823–836.e2. doi:10.1016/j. cgh.2017.06.037.
  72. Skřivan P, Sluková M, Hradecká B, Jurkaninová L, Švec I. Cereální chemie a technologie II: Sekundární zpracování obilovin – pekárenská technologie. Skripta VŠCHT Praha, Vydavatelství VŠCHT Praha, 2022. 1. vydání, 176 s.. ISBN 978-80-7592-135-2.
  73. Skřivan P. Kvasy v pekárenské technologii. Výživa a potraviny 3, 2022:7–8. ISSN 1211-846X.
  74. Sollid LM, Markussen GEkJ, Gjerde H. Vartdal F. Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. Journal of Experimental Medicine, 1989;169(1):345–350.
  75. Sonnenburg JL, Bäckhed F. Diet–microbiota interactions as moderators of human metabolism. Nature, 2016;535(7610):56– 64.
  76. Stavropoulou E, Bezirtzoglou E. Probiotics in medicine: a long debate. Frontiers in immunology, 2020;11:2192.
  77. Stene LC, Honeyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, Emery L, et al. Rotavirus Infection Frequency and Risk of Celiac Disease Autoimmunity in Early Childhood: A Longitudinal Study. Am J Gastroenterol, 2006;1001:2333–2340. doi: 10.1111/j.15720241.2006.00741.x.
  78. Stenman SM, Venäläinen JI, Lindfors K, Auriola S, Mauriala T., Kaukovirta-Norja A, Mäki M. Enzymatic detoxification of gluten by germinating wheat proteases: implications for new treatment of celiac disease. Annals of medicine, 2009;41(5):390–400.
  79. Strachan DP. Hay fever, hygiene, and household size. The British Medical Journal, 1989; 299(6710):1259–1260. doi:10.1136/ bmj.299.6710.1259.
  80. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 2014;514(7521):181–186. doi: 10.1038/ nature13793. Epub 2014 Sep 17. PMID: 25231862.
  81. Tapia G, Chudá K, Kahrs CR, Stene LC, Kramna L, Marild K, et al. Parechovirus Infection in Early Childhood and Association With Subsequent Celiac Disease. Am J Gastroenterol, 2020;116(4):788–795. doi: 10.14309/ajg.0000000000001003.
  82. Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell death & disease, 2016;7(6):e2244.
  83. Thrackl K. Quantitative und qualitative Analyse von Gluten in unterschiedlichen Weizenarten und Sorten. Diplomarbeit / Masterarbeit – Abteilung Pflanzenzüchtung, 2017, BOKU-Universität für Bodenkultur, pp 63.
  84. Torsten M, Aaron L. Microbial transglutaminase is immunogenic and potentially pathogenic in pediatric celiac disease. Frontiersin pediatrics, 2018:389.
  85. Vlasova AN, Amimo JO, Saif LJ. Porcine rotaviruses: epidemiology, immune responses and control strategies. Viruses, 2017;9(3):48.
  86. Vrbová T. Víme, co jíme?: aneb: průvodce “Éčky” v potravinách. EcoHouse, 2001. ISBN 9788023875041.
  87. Yu LCH, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World journal of gastrointestinal pathophysiology, 2012;3(1):27.
Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#