#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Extracelulární vezikuly v infekčním lékařství – význam a perspektivy


Authors: D. Vydrář;  S. Snopková;  P. Husa
Authors‘ workplace: Klinika infekčních chorob Lékařské fakulty Masarykovy univerzity a Fakultní nemocnice Brno
Published in: Epidemiol. Mikrobiol. Imunol. 72, 2023, č. 3, s. 164-171
Category: Review Article

Overview

Extracellular vesicles (EVs) are mother cell derived transport units released into the extracellular environment. They are a new pillar of intercellular communication as they carry nucleic acids, proteins, and other signalling molecules, protecting them from degradation in the extracellular environment until fusion of the vesicle with the target cell. The transport mechanism relies on surface structures involved in cell adhesion. It is well known that all cellular organisms are capable of producing EVs. Most human cells have this capability, and EVs can be detected in all body compartments. At the time of their discovery, EVs were considered as useless waste vesicles of marginal interest. Thanks to the newly described transport mechanisms of biologically active molecules, EVs are currently known to participate in a variety of homeostatic mechanisms. In infectious diseases, the most studied area is the modulation of the immune response, where they are seen as potential biomarkers, as their production or the content they carry can be altered under pathological conditions. For microbes, interactions at the pathogen-pathogen and pathogen-host level are at the forefront of attention. EVs also have potential for use as drug delivery systems and novel targets for pharmacotherapy.

Keywords:

infectious diseases – biomarker – extracellular vesicles – pathogen


Sources
  1. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles, 2018;7(1):1535750.
  2. Bazzan E, Tinè M, Casara A, et al. Critical Review of the Evolution of Extracellular Vesicles’ Knowledge: From 1946 to Today. Int J Mol Sci, 2021;22(12):6417.
  3. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol, 2018;19(4):213–228.
  4. Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 2019;21(1):9–17.
  5. Margolis L, Sadovsky Y. The biology of extracellular vesicles: The known unknowns. PLoS Biol, 2019;17(7):e3000363.
  6. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007;9(6):654–659.
  7. Słomka A, Urban SK, Lukacs-Kornek V, et al. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol, 2018;9:2723.
  8. Battistelli M, Falcieri E. Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology, 2020;9(1):21.
  9. Caruso S, Poon IKH. Apoptotic Cell-Derived Extracellular Vesicles: More Than Just Debris. Front Immunol, 2018;9:1486.
  10. Kakarla R, Hur J, Kim YJ, et al. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med, 2020;52(1):1–6.
  11. van der Pol E, Böing AN, Gool EL, et al. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost, 2016;14(1):48– 56.
  12. Witwer KW, Théry C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J Extracell Vesicles, 2019;8(1):1648167.
  13. Yates AG, Pink RC, Erdbrügger U, et al. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo. J Extracell Vesicles, 2022;11(1):e12151.
  14. Benjamin-Davalos S, Koroleva M, Allen CL, et al. Co-Isolation of Cytokines and Exosomes: Implications for Immunomodulation Studies. Front Immunol, 2021;12:638111.
  15. Aiello A, Giannessi F, Percario ZA, et al. An emerging interplay between extracellular vesicles and cytokines. Cytokine Growth Factor Rev, 2020;51:49–60.
  16. Amjadi MF, Avner BS, Greenlee-Wacker MC, et al. Neutrophil-derived extracellular vesicles modulate the phenotype of naïve human neutrophils. J Leukoc Biol, 2021;110(5):917–925.
  17. Boilard E. Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J Lipid Res, 2018;59(11):2037–2046.
  18. Kriebel PW, Majumdar R, Jenkins LM, et al. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J Cell Biol, 2018;217(8):2891–2910.
  19. Martinon F. Orchestration of pathogen recognition by inflammasome diversity: Variations on a common theme. Eur J Immunol, 2007;37(11):3003–3006.
  20. Hui WW, Emerson LE, Clapp B, et al. Antigen-encapsulating host extracellular vesicles derived from Salmonella-infected cells stimulate pathogen-specific Th1-type responses in vivo. PLoS Pathog, 2021;17(5):e1009465.
  21. Schorey JS, Cheng Y, Singh PP, et al. Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO reports, 2015;16(1):24–43.
  22. Picca A, Guerra F, Calvani R, et al. Extracellular Vesicles and Damage-Associated Molecular Patterns: A Pandora’s Box in Health and Disease. Front Immunol, 2020;11:601740.
  23. Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol, 2022:1–15.
  24. Segura E, Amigorena S, Théry C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis, 2005;35(2):89–93.
  25. Tkach M, Kowal J, Zucchetti AE, et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J, 2017;36(20):3012–3028.
  26. Hofmann L, Ludwig S, Vahl JM, et al. The Emerging Role of Exosomes in Diagnosis, Prognosis, and Therapy in Head and Neck Cancer. Int J Mol Sci, 2020;21(11):E4072.
  27. Ma F, Vayalil J, Lee G, et al. Emerging role of tumor-derived extracellular vesicles in T cell suppression and dysfunction in the tumor microenvironment. J Immunother Cancer, 2021;9(10):e003217.
  28. Zhang W, Jiang X, Bao J, et al. Exosomes in Pathogen Infections: A Bridge to Deliver Molecules and Link Functions. Front Immunol, 2018;9:90.
  29. Yates AG, Pink RC, Erdbrügger U, et al. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo. J Extracell Vesicles, 2022;11(1):e12151.
  30. Lu M, DiBernardo E, Parks E, et al. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Autoimmune Disorders. Front Immunol, 2021;12:566299.
  31. Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer – implications for future improvements in cancer care. Nat Rev Clin Oncol, 2018;15(10):617–638.
  32. Nolte-‘t Hoen E, Cremer T, Gallo RC, et al. Extracellular vesicles and viruses: Are they close relatives? Proc Natl Acad Sci U S A, 2016;113(33):9155–9161.
  33. Gould SJ, Booth AM, Hildreth JEK. The Trojan exosome hypothesis. Proc Natl Acad Sci U S A, 2003;100(19):10592–10597.
  34. Ramakrishnaiah V, Thumann C, Fofana I, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A, 2013;110(32):13109–13113.
  35. Feng Z, Hensley L, McKnight KL, et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature, 2013;496(7445):367–371.
  36. Nagashima S, Jirintai S, Takahashi M, et al. Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies. J Gen Virol, 2014;95(Pt 10):2166–2175.
  37. Bello-Morales R, López-Guerrero JA. Isolation/Analysis of Extracellular Microvesicles from HSV-1-Infected Cells. Methods Mol Biol, 2020;2060:305–317.
  38. Kadiu I, Narayanasamy P, Dash PK, et al. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J Immunol, 2012;189(2):744– 754.
  39. Arakelyan A, Fitzgerald W, Zicari S, et al. Extracellular Vesicles Carry HIV Env and Facilitate Hiv Infection of Human Lymphoid Tissue. Sci Rep, 2017;7(1):1695.
  40. Dias MVS, Costa CS, daSilva LLP. The Ambiguous Roles of Extracellular Vesicles in HIV Replication and Pathogenesis. Front Microbiol, 2018;9:2411.
  41. Martins S de T, Alves LR. Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin? Front Cell Infect Microbiol, 2020;10:593170.
  42. Nocera AL, Mueller SK, Stephan JR, et al. Exosome swarms eliminate airway pathogens and provide passive epithelial immunoprotection through nitric oxide. J Allergy Clin Immunol, 2019;143(4):1525–1535.
  43. de Carvalho JV, de Castro RO, da Silva EZM, et al. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One, 2014;9(11):e113691.
  44. El-Shennawy L, Hoffmann AD, Dashzeveg NK, et al. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nat Commun, 2022;13(1):405.
  45. Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol, 2019;17(1):13–24.
  46. Sartorio MG, Pardue EJ, Feldman MF, et al. Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annu Rev Microbiol, 2021;75(1):609–630.
  47. Aytar Çelik P, Derkuş B, Erdoğan K, et al. Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnol Adv, 2022;54:107869.
  48. Briaud P, Carroll RK. Extracellular Vesicle Biogenesis and Functions in Gram-Positive Bacteria. Infect Immun, 2020;88(12):e00433–20.
  49. Caruana JC, Walper SA. Bacterial Membrane Vesicles as Mediators of Microbe – Microbe and Microbe – Host Community Interactions. Front Microbiol, 2020;11:432.
  50. Liu X, Xiao J, Wang S, et al. Research Progress on Bacterial Membrane Vesicles and Antibiotic Resistance. Int J Mol Sci, 2022;23(19):11553.
  51. Hendrix A, De Wever O. Systemically circulating bacterial extracellular vesicles: origin, fate, and function. Trends Microbiol, 2022;30(3):213–216.
  52. Cuesta CM, Guerri C, Ureña J, et al. Role of Microbiota-Derived Extracellular Vesicles in Gut-Brain Communication. Int J Mol Sci, 2021;22(8):4235.
  53. Carrera-Bravo C, Koh EY, Tan KSW. The roles of parasite-derived extracellular vesicles in disease and host-parasite communication. Parasitol Int, 2021;83:102373.
  54. Abou-El-Naga IF. Emerging roles for extracellular vesicles in Schistosoma infection. Acta Trop, 2022;232:106467.
  55. Zhang X, Gong W, Cao S, et al. Comprehensive Analysis of Non-coding RNA Profiles of Exosome-Like Vesicles From the Protoscoleces and Hydatid Cyst Fluid of Echinococcus granulosus. Front Cell Infect Microbiol, 2020;10:316.
  56. White R, Kumar S, Chow FWN, et al. Extracellular vesicles from Heligmosomoides bakeri and Trichuris muris contain distinct microRNA families and small RNAs that could underpin different functions in the host. Int J Parasitol, 2020;50(9):719–729.
  57. Silva VO, Maia MM, Torrecilhas AC, et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response. Parasite Immunol, 2018;40(9):e12571.
  58. Szempruch AJ, Dennison L, Kieft R, et al. Sending a message: extracellular vesicles of pathogenic protozoan parasites. Nat Rev Microbiol, 2016;14(11):669–675.
  59. Twu O, de Miguel N, Lustig G, et al. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶parasite interactions. PLoS Pathog, 2013;9(7):e1003482.
  60. Mantel PY, Hoang AN, Goldowitz I, et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe, 2013;13(5):521–534.
  61. Douanne N, Dong G, Amin A, et al. Leishmania parasites exchange drug-resistance genes through extracellular vesicles. Cell Rep, 2022;40(3):111121.
  62. Ciferri MC, Quarto R, Tasso R. Extracellular Vesicles as Biomarkers and Therapeutic Tools: From Pre-Clinical to Clinical Applications. Biology (Basel), 2021;10(5):359.
  63. Alberro A, Iparraguirre L, Fernandes A, et al. Extracellular Vesicles in Blood: Sources, Effects, and Applications. Int J Mol Sci, 2021;22(15):8163.
  64. Zhou B, Xu K, Zheng X, et al. Application of exosomes as liquid biopsy in clinical diagnosis. Sig Transduct Target Ther, 2020;5(1):1–14.
  65. Hu T, Wolfram J, Srivastava S. Extracellular Vesicles in Cancer Detection: Hopes and Hypes. Trends Cancer, 2021;7(2):122–133.
  66. Abdel-Haq H. The Potential of Liquid Biopsy of the Brain Using Blood Extracellular Vesicles: The First Step Toward Effective Neuroprotection Against Neurodegenerative Diseases. Mol Diagn Ther, 2020;24(6):703–713.
  67. Mu Y, McManus DP, Gordon CA, et al. Parasitic Helminth-Derived microRNAs and Extracellular Vesicle Cargos as Biomarkers for Helminthic Infections. Front Cell Infect Microbiol, 2021;11:708952.
  68. Guo X, Wang S, Zhang J, et al. Proteomic profiling of serum extracellular vesicles identifies diagnostic markers for echinococcosis. PLoS Negl Trop Dis, 2022; 16(10):e0010814.
  69. Chen Y, Giri BR, Li X, et al. Preliminary evaluation of the diagnostic potential of Schistosoma japonicum extracellular vesicle proteins for Schistosomiasis japonica. Acta Trop, 2020;201:105184.
  70. Zheng W, LaCourse SM, Song B, et al. Diagnosis of paediatric tuberculosis by optically detecting two virulence factors on extracellular vesicles in blood samples. Nat Biomed Eng, 2022;6(8):979–991.
  71. Holcar M, Kandušer M, Lenassi M. Blood Nanoparticles – Influence on Extracellular Vesicle Isolation and Characterization. Front Pharmacol, 2021;12:773844.
  72. Zhang Q, Jeppesen DK, Higginbotham JN, et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat Cell Biol, 2021;23(12):1240– 1254.
  73. Shah R, Patel T, Freedman JE. Circulating Extracellular Vesicles in Human Disease. N Engl J Med, 2018;379(10):958–966.
  74. Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol, 2021;16(7):748–759.
  75. Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov, 2022;21(5):379–399.
  76. Chen J, Zhang H, Wang S, et al. Inhibitors of Bacterial Extracellular Vesicles. Front Microbiol, 2022;13:835058.
  77. You J, Fu Z, Zou L. Mechanism and Potential of Extracellular Vesicles Derived From Mesenchymal Stem Cells for the Treatment of Infectious Diseases. Front Microbiol, 2021;12:761338.
  78. Santos P, Almeida F. Exosome-Based Vaccines: History, Current State, and Clinical Trials. Front Immunol, 2021;12:711565.
  79. Carter NJ. Multicomponent Meningococcal Serogroup B Vaccine (4CMenB; Bexsero®): A Review of its Use in Primary and Booster Vaccination. BioDrugs, 2013;27(3):263–274.
  80. Gimona M, Brizzi MF, Choo ABH, et al. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy, 2021;23(5):373–380.
Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#