#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Preparation and evaluation of spray-dried inhalable microparticles from carrier mixtures


Authors: Andrea Peštálová;  Karolína Molatová;  Jan Gajdziok
Published in: Čes. slov. Farm., 2023; 72, 214-222
Category: Original Articles
doi: https://doi.org/10.5817/CSF2023-5-214

Overview

The formulation of microparticles composed of a mixture of carriers represents an innovative approach for lung drug delivery of dry powder. The carriers used can significantly influence the properties of the microparticles, such as size, shape, surface area, hygroscopicity, or aggregation, thus improving the aerosolization of the drugs after inhalation. The properties mentioned above are crucial for effective  pulmonary  therapy. The  combination of carriers of a carbohydrate nature and gelling agents is advantageous for controlled drug release. The experimental work aimed to prepare by spray drying and subsequently evaluate ten batches of microparticles composed of sugar-based carriers (mannitol, maltodextrin, dextran) and gelling polymers (chitosan, chondroitin sulfate) and to select a suitable combination for follow-up experimental work aimed at drug incorporation into the microparticle matrix. The most suitable parameters were exhibited by batches whose aerodynamic diameter was close to 5 µm, particles prepared from a combination of mannitol and dextran, chitosan and chondroitin, or maltodextrin and chondroitin. These batches also showed the highest fine particle fraction value (> 43%). From a processability point of view, the batch with maltodextrin and chondroitin is preferable due to the lower viscosity of the dispersion and the more regular shape of the final microparticles.

Keywords:

microparticles – Mixtures – inhalation administration – carriers – spray drying


Sources
  1. Amidi M., Pellikaan H. C., de Boer A. H., Crommelin D. J., Hennink W. E., Jiskoot W. Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery. Eur. J. Pharm. Biopharm. 2008; 68, 191–200.
  2. McArthur A. J., Oliver V. L., Lambert P., French E., Harker J., McIntosh M. P. A Design of Experiments approach to optimising spray drying yield and production efficiency of a model inhaled powder for global health applications. J. Aerosol. Med. Pulm. D. 2022; 35, A13–A14.
  3. Kašáková E., Kašák V. Inhalační systémy na českém trhu pro léčbu pacientů s chronickou obstrukcí průdušek. Praktické lékárenství 2015; 11, 16–18.
  4. Labiris N. R., Dolovich M. B. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Brit. J. Clin. Pharmaco. 2003; 56, 588–599.
  5. El-Sherbiny I. M., El-Baz N. M., Yacoub M. H. Inhaled nano-and microparticles for drug delivery. Glob. Cardiol. Sci. Pract. 2015; 1, 2.
  6. Jain H., Bairagi A., Srivastava S., Singh S. B., Mehra N. K. Recent advances in the development of microparticles for pulmonary administration. Drug Discov. Today 2020; 25, 1865–1872.
  7. Gharse S., Fiegel J. Large porous hollow particles: lightweight champions of pulmonary drug delivery. Curr. Pharm. Design 2016; 22, 2463–2469.
  8. Yang Y., Bajaj N., Xu P., Ohn K., Tsifansky M. D., Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials. 2009; 30, 1947–1953.
  9. Newman S. P. Drug delivery to the lungs: challenges and opportunities. Ther. Deliv. 2017; 8, 647–661.
  10. Bajerová M., Dvořáčková K., Gajdziok J., Masteiková R., Rabišková M. Metody přípravy mikročástic ve farmaceutické technologii. Čes. slov. Farm. 2009; 58, 6.
  11. Alhajj N., O’Reilly N. J., Cathcart H. Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. Powder Technol. 2021; 384, 313–331.
  12. Ferdynand M. S., Nokhodchi A. Co-spraying of carriers (mannitol-lactose) as a method to improve aerosolization performance of salbutamol sulfate dry powder inhaler. Drug Deliv. Transl. Re. 2020; 10, 1418–1427.
  13. Zhao Z., Wang G., Huang Z., Huang Y., Chen H., Pan X., Zhang X. Dry Powder Inhalers Based on Chitosan-Mannitol Binary Carriers: Effect of the Powder Properties on the Aerosolization Performance. AAPS PharmSciTech. 2022; 23, 1–11.
  14. Huang Y., Huang Z., Zhang X., Zhao Z., Zhang X., Wang K., Wu C. Chitosan-based binary dry powder inhaler carrier with nanometer roughness for improving in vitro and in vivo aerosolization performance. Drug Deliv. Transl. Re. 2018; 8, 1274–1288.
  15. Zhao Z., Zhang X., Cui Y., Huang Y., Huang Z., Wang G., Wu C. Hydroxypropyl-β-cyclodextrin as anti-hygroscopicity agent inamorphous lactose carriers for dry powder inhalers. Powder Technol. 2019; 358, 29–38.
  16. Pilcer G., Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 2010; 392, 1–19.
  17. Aquino R. P., Auriemma G., Conte G. M., Esposito T., Sommella E., Campiglia P., Sansone F. Development of chitosan/mannitol microparticles as delivery system for the oral administration of a spirulina bioactive peptide extract. Molecules 2020; 25, 20–86.
  18. Dabbagh A., Abu Kasim N. H., Yeong C. H., Wong T. W., Abdul Rahman N. Critical parameters for particle-based pulmonary delivery of chemotherapeutics. J. Aerosol Med. Pulm. D. 2018; 31, 139–154.
  19. Sosnik A., das Neves J., Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog. Polym. Sci. 2014; 39, 2030–2075.
  20. Sansone F., Mencherini T., Picerno P., d’Amore M., Aquino R. P., Lauro M. R. Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J.Food Eng. 2011; 105, 468–476.
  21. Inkson B. J. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. Materials Characterization Using Nondestructive Evaluation (NDE) Methods. 1st ed. United Kingdom: Woodhead Publishing 2016; 17–43.
  22. Holzman M. Laserově indukovaná funkcionalizace porézních titanových povrchů pro biomedicíncké aplikace. https://dspace5.zcu.cz/handle/11025/48859 (11. 12.2022).
  23. Český lékopis. Praha: Grada Publishing 2017. 4912 s.
  24. Chalabala M. Technologie léků. 2. vydání. Praha: Galén 2001; 238–250.
  25. Nayak S., Ghugare P., Vaidhun B. Evaluation of aerodynamic particle size distribution of drugs used in inhalation therapy: A concise review. Int. J. Res. 2020; 7, 264–271.
  26. Ko J. A., Park H. J., Hwang S. J., Park J. B., Lee J. S. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int. J. Pharm. 2002; 249, 165–174.
  27. Chen B. T., Cheng Y. S., Yeh H. C. Performance of a TSI aerodynamic particle sizer. Aerosol Sci. Tech. 1985; 4, 89–97.
  28. Jedelský J. Dispergátor pevných částic TSI – SSPD 3433. Dostupné na: http://www.energetickeforum.cz/fsi-vut- v-brne/pristrojove-vybaveni/dispergator-pevnych-castic (28. 7. 2022).
  29. Torres M. A., Beppu M. M., Santana C. C. Characterization of chemically modified chitosan microspheres as adsorbents using standard proteins (bovine serum albumin and lysozyme). Braz. J. Chem. Eng. 2007; 24, 325–336.
  30. Xu D., Xu Y., Liu G., Hou Z., Yuan Y., Wang S., Sun B. Effect of carrier agents on the physical properties and morphology of spray-dried Monascus pigment powder. Lwt. 2018; 98, 299–305.
  31. Wang X., Wan W., Lu J., Quan G., Pan X., & Liu P. Effects of L-leucine on the properties of spray-dried swellable microparticles with wrinkled surfaces for inhalation therapy of pulmonary fibrosis. Int. J.Pharm. 2021; 610, 121–223.
  32. Ma Z., Merkus H. G., de Smet J. G., Heffels C., Scarlett B. New developments in particle characterization by laser diffraction: size and shape. Powder Technol. 2000; 111, 66–78.
  33. Perkušić M., Nodilo L. N., Ugrina I., Špoljarić D., Brala C. J., Pepić I., Hafner A. Tailoring functional spray-dried powder platform for efficient donepezil nose-to-brain delivery. Int. J. Pharm. 2022; 624, 122038.
  34. Manser M., Morgan B. A., Feng X., Rhem R. G., Dolovich M. B., Xing Z., Thompson M. R. Dextran Mass Ratio Controls Particle Drying Dynamics in a Thermally Stable Dry Powder Vaccine for Pulmonary Delivery. Pharm. Res. 2022; 39, 2315–2328.
  35. Rohani S. S. R., Abnous K., Tafaghodi M. Preparation and characterization of spray-dried powders intended for pulmonary delivery of insulin with regard to the selection of excipients. Int. J. Pharm. 2014; 465, 464–478.
Labels
Pharmacy Clinical pharmacology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#