#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Molecular basis of multiple myeloma


Authors: D. Nižňanská 1;  M. Vlachová 1;  J. Gregorová 1;  J. Kotašková 2;  M. Jarošová 2;  S. Ševčíková 1
Authors‘ workplace: Babákova myelomová skupina, Ústav patologické fyziologie, LF MU Brno 1;  Centrum molekulární biologie, a genetiky, Interní hematologická a onkologická klinika LF MU a FN Brno 2
Published in: Klin Onkol 2024; 38(1): 27-33
Category: Reviews
doi: https://doi.org/10.48095/ccko202427

Overview

Background: Multiple myeloma (MM) is a heterogeneous hematological malignancy characterized by clonal expansion of malignant plasma cells in the bone marrow. The disease is accompanied by various clinical manifestations, such as bone lesions, anemia, hypercalcemia, and renal insufficiency. However, despite significant advances in treatment over the last two decades, the disease remains challenging to treat, and most patients relapse. Although its pathogenesis has not yet been elucidated, it is clear that genomic instability plays a key role in its develop­ment or resistance to treatment. In some instances, the cause of this instability is chromothripsis, a form of complex genomic rearrangement that involves shattering and subsequent haphazard reassembly of chromosomes within a single catastrophic event. The resulting rearrangements involve a variety of structural changes, including deletions, duplications, inversions, and translocations, that lead to genome disruption. Specifically, these changes may result in alteration or inactivation of tumor suppressor genes (TP53 and CDKN2C), activation of oncogenes (MAF, FGFR3, and CCND1) or genes involved in key cellular processes. Unraveling the mechanisms that result in chromothripsis provides opportunities to identify critical genes and pathways involved in MM pathogenesis. These findings may serve as a basis for improved dia­gnostic approaches. Purpose: The goal of this review is to summarize the common primary and secondary chromosomal aberrations in MM with a particular focus on introducing complex chromosomal aberrations, especially chromothripsis in MM.

Keywords:

chromothripsis – chromosome aberrations – Multiple myeloma


Sources

1. Pieper K, Grimbacher B, Eibel H. B-cell bio­logy and development. J Allergy Clin Immunol 2013; 131(4): 959–971. doi: 10.1016/ j.jaci.2013.01.046.

2. Kurosaki T. B-lymphocyte bio­logy. Immunol Rev 2010; 237(1): 5–9. doi: 10.1111/ j.1600-065X.2010.00946.x.

3. De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol 2015; 15(3): 137–148. doi: 10.1038/ nri3804.

4. Solly S. Remarks on the pathology of mollities ossium; with cases. Med Chir Trans 1844; 27: 435–498.8. doi: 10.1177/ 095952874402700129.

5. Jones HB. English:  Original Paper Describing the Bence-Jones-Protein. 1848. [online]. Available from: https:/ / commons.wikimedia.org/ wiki/ File:Bence_Jones-On_a_New_Substance_Occurring_in_the_Urine.pdf.

6. Edelman GM, Gally JA. The nature of Bence-Jones proteins. Chemical similarities to polypetide chains of myeloma globulins and normal gamma-globulins. J Exp Med 1962; 116(2): 207–227. doi: 10.1084/ jem.116.2.
207.

7. Wright JH. A case of multiple myeloma. J Boston Soc Med Sci 1900; 4(8): 195–204.5.

8. Yang P, Qu Y, Wang M et al. Pathogenesis and treatment of multiple myeloma. MedComm 2022; 3(2): e146. doi: 10.1002/ mco2.146.

9. Landgren O, Kyle RA, Pfeiffer RM et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 2009; 113(22): 5412–5417. doi: 10.1182/ blood-2008-12-194241.

10. Abeykoon JP, Tawfiq RK, Kumar S et al. Monoclonal gammopathy of undetermined significance: evaluation, risk assessment, management, and beyond. Fac Rev 2022; 11: 34. doi: 10.12703/ r/ 11-34.

11. Therneau TM, Kyle RA, Melton LJ et al. Incidence of monoclonal gammopathy of undetermined significance and estimation of duration before first clinical recognition. Mayo Clin Proc 2012; 87(11): 1071–1079. doi: 10.1016/ j.mayocp.2012.06.014.

12. Rajkumar SV, Gupta V, Fonseca R et al. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia 2013; 27(8): 1738–1744. doi: 10.1038/ leu.2013.86.

13. Krejčí D, Pehalová L, Talábová A et al. Novotvary 2018 – Současné epidemiologické trendy novotvarů v České republice. [online]. Dostupné z: https:/ / www.uzis.cz/ index.php?pg=record&id=8352.

14. Palumbo A, Avet-Loiseau H, Oliva S et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol 2015; 33(26): 2863–2869. doi: 10.1200/ JCO.2015.61.2267.

15. Kumar SK, Rajkumar V, Kyle RA et al. Multiple mye­loma. Nat Rev Dis Primers 2017; 3(1): 17046. doi: 10.1038/ nrdp.2017.46.

16. Rajkumar SV, Dimopoulos MA, Palumbo A et al. International Myeloma Working Group updated criteria for the dia­gnosis of multiple myeloma. Lancet Oncol 2014; 15(12): e538–e548. doi: 10.1016/ S1470-2045(14)70442-5.

17. Crabtree M, Cai J, Qing X. Conventional karyotyping and fluorescence in situ hybridization for detection of chromosomal abnormalities in multiple myeloma. J Hematol 2022; 11(3): 87–91. doi: 10.14740/ jh1007.

18. Fonseca R, Bailey RJ, Ahmann GJ et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002; 100(4): 1417–1424. doi: 10.1182/ blood.V100.4.1417.h81602001417_1417_1424.

19. Schmidt-Hieber M, Gutiérrez ML, Pérez-Andrés M et al. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells. Haematologica 2013; 98(2): 279–287. doi: 10.3324/ haematol.2011.060632.

20. Yan Y, Qin X, Liu J et al. Clonal phylogeny and evolution of critical cytogenetic aberrations in multiple myeloma at single-cell level by QM-FISH. Blood Adv 2022; 6(2): 441–451. doi: 10.1182/ bloodadvances.2021004992.

21. Chretien ML, Corre J, Lauwers-Cances V et al. Understanding the role of hyperdiploidy in myeloma prognosis: which trisomies really matter? Blood 2015; 126(25):
2713–2719. doi: 10.1182/ blood-2015-06-650242.

22. Walker BA, Wardell CP, Murison A et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun 2015; 6(1): 6997. doi: 10.1038/ ncomms7997.

23. Kuglík P, Filková H, Oltová A et al. Význam a současné možnosti dia­gnostiky cytogenetických změn u mnohočetného myelomu. Vnitr Lek 2006; 52 (Suppl 2): 76–78.

24. Moreau P, Facon T, Leleu X et al. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 2002; 100(5): 1579–1583. doi: 10.1182/ blood-2002-03-0749.

25. Walker BA, Wardell CP, Johnson DC et al. Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood 2013; 121(17):
3413–3419. doi: 10.1182/ blood-2012-12-471888.

26. Chesi M, Bergsagel PL, Brents LA et al. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996; 88(2): 674–681.

27. Leiba M, Duek A, Amariglio N et al. Translocation t(11;14) in newly dia­gnosed patients with multiple myeloma: is it always favorable? Genes Chromosomes Cancer 2016; 55(9): 710–718. doi: 10.1002/ gcc.22372.

28. An G, Xu Y, Shi L et al. T(11;14) multiple myeloma: a subtype associated with distinct immunological features, immunophenotypic characteristics but divergent outcome. Leuk Res 2013; 37(10): 1251–1257. doi: 10.1016/ j.leukres.2013.06.020.

29. Lauring J, Abukhdeir AM, Konishi H et al. The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood 2008; 111(2): 856–864. doi: 10.1182/ blood-2007-05-088674.

30. Nemec P, Zemanova Z, Kuglik P et al. Complex karyotype and translocation t(4;14) define patients with high-risk newly dia­gnosed multiple myeloma: results of CMG2002 trial. Leuk Lymphoma 2012; 53(5): 920–927. doi: 10.3109/ 10428194.2011.634042.

31. Stong N, Ortiz-Estévez M, Towfic F et al. The location of the t(4;14) translocation breakpoint within the NSD2 gene identifies a subset of patients with high--risk NDMM. Blood 2023; 141(13): 1574–1583. doi: 10.1182/ blood.2022016212.

32. Hoang PH, Cornish AJ, Dobbins SE et al. Mutational processes contributing to the development of multiple myeloma. Blood Cancer J 2019; 9(8): 60. doi: 10.1038/ s41408-019-0221-9.

33. Shaughnessy J, Gabrea A, Qi Y et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001; 98(1): 217–223. doi: 10.1182/ blood.V98.1.217.

34. Campo E, Jaffe ES, Cook JR et al. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood 2022; 140(11): 1229–1253. doi: 10.1182/ blood.2022015851.

35. Oben B, Froyen G, Maclachlan KH et al. Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities. Nat Commun 2021; 12(1): 1861. doi: 10.1038/ s41467-021-22140-0.

36. Barwick BG, Neri P, Bahlis NJ et al. Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nat Commun 2019; 10(1): 1911. doi: 10.1038/ s41467-019-09555-6.

37. Walker BA, Leone PE, Chiecchio L et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 2010; 116(15): e56–e65. doi: 10.1182/ blood-2010-04-279
596.

38. Shi L, Wang S, Zangari M et al. Over-expression of CKS1B activates both MEK/ ERK and JAK/ STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget 2010; 1(1): 22–33. doi: 10.18632/ oncotarget.105.

39. Smetana J, Berankova K, Zaoralova R et al. Gain(1)(q21) is an unfavorable genetic prognostic factor for patients with relapsed multiple myeloma treated with thalidomide but not for those treated with bortezomib. Clin Lymphoma Myeloma Leuk 2013; 13(2): 123–130. doi: 10.1016/ j.clml.2012.11.012.

40. Schavgoulidze A, Talbot A, Perrot A et al. Biallelic deletion of 1p32 defines ultra-high-risk myeloma, but monoallelic del(1p32) remains a strong prognostic factor. Blood 2023; 141(11): 1308–1315. doi: 10.1182/ blood.2022017863.

41. Weinhold N, Ashby C, Rasche L et al. Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood 2016; 128(13):
1735–1744. doi: 10.1182/ blood-2016-06-723007.

42. Ansari-Pour N, Samur M, Flynt E et al. Whole-genome analysis identifies novel drivers and high-risk double--hit events in relapsed/ refractory myeloma. Blood 2023; 141(6): 620–633. doi: 10.1182/ blood.2022017010.

43. Shirazi F, Jones RJ, Singh RK et al. Activating KRAS, NRAS, and BRAF mutants enhance proteasome capacity and reduce endoplasmic reticulum stress in multiple myeloma. Proc Natl Acad Sci U S A 2020; 117(33):
20004–20014. doi: 10.1073/ pnas.2005052117.

44. Rustad EH, Yellapantula VD, Glodzik D et al. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov 2020; 1(3): 258–273. doi: 10.1158/ 2643-3230.BCD-20-0132.

45. Holland AJ, Cleveland DW. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 2012; 18(11): 1630–1638. doi: 10.1038/ nm.2988.

46. Guo W, Comai L, Henry IM. Chromoanagenesis in plants: triggers, mechanisms, and potential impact. Trends Genet 2023; 39(1): 34–45. doi: 10.1016/ j.tig.2022.08.003.

47. Liu P, Erez A, Nagamani SCS et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011; 146(6): 889–903. doi: 10.1016/ j.cell.2011.07.042.

48. Berry NK, Dixon-McIver A, Scott RJ et al. Detection of complex genomic signatures associated with risk in plasma cell disorders. Cancer Genet 2017; 218–219: 1–9. doi: 10.1016/ j.cancergen.2017.08.004.

49. Maura F, Bolli N, Angelopoulos N et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun 2019; 10(1): 3835. doi: 10.1038/ s41467-019-11680-1.

50. Baca SC, Prandi D, Lawrence MS et al. Punctuated evolution of prostate cancer genomes. Cell 2013; 153(3):
666–677. doi: 10.1016/ j.cell.2013.03.021.

51. Stephens PJ, Greenman CD, Fu B et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144(1):
27–40. doi: 10.1016/ j.cell.2010.11.055.

52. Ly P, Teitz LS, Kim DH et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat Cell Biol 2017; 19(1): 68–75. doi: 10.1038/ ncb3450.

53. Korbel JO, Campbell PJ. Criteria for inference of chromothripsis in cancer genomes. Cell 2013; 152(6):
1226–1236. doi: 10.1016/ j.cell.2013.02.023.

54. Hadi K, Yao X, Behr JM et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 2020; 183(1): 197–210.e32. doi: 10.1016/ j.cell.2020.08.006.

55. Stevens JB, Abdallah BY, Liu G et al. Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Dis 2011; 2(6): e178. doi: 10.1038/ cddis.2011.60.

56. Zhang CZ, Spektor A, Cornils H et al. Chromothripsis from DNA damage in micronuclei. Nature 2015; 522(7555): 179–184. doi: 10.1038/ nature14493.

57. Liu S, Kwon M, Mannino M et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 2018; 561(7724): 551–555. doi: 10.1038/ s41586-018-0534-z.

58. Umbreit NT, Zhang CZ, Lynch LD et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 2020; 368(6488): eaba0712. doi: 10.1126/ science.aba0712.

59. Shimizu N, Shingaki K, Kaneko-Sasaguri Y et al. When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp Cell Res 2005; 302(2): 233–243. doi: 10.1016/ j.yexcr.2004.09.001.

60. Maciejowski J, Li Y, Bosco N et al. Chromothripsis and kataegis induced by telomere crisis. Cell 2015; 163(7): 1641–1654. doi: 10.1016/ j.cell.2015.11.054.

61. Aaltonen LA, Abascal F, Abeshouse A et al. Pan-cancer analysis of whole genomes. Nature 2020; 578(7793):
82–93. doi: 10.1038/ s41586-020-1969-6.

62. Ashby C, Boyle EM, Bauer MA et al. Structural variants shape the genomic landscape and clinical outcome of multiple myeloma. Blood Cancer J 2022; 12(5): 1–9. doi: 10.1038/ s41408-022-00673-x.

63. Shorokhova M, Nikolsky N, Grinchuk T. Chromothripsis-explosion in genetic science. Cells 2021; 10(5): 1102. doi: 10.3390/ cells10051102.

64. Cortés-Ciriano I, Lee JJK, Xi R et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet 2020; 52(3):
331–341. doi: 10.1038/ s41588-019-0576-7.

65. Voronina N, Wong JKL, Hübschmann D et al. The landscape of chromothripsis across adult cancer types. Nat Commun 2020; 11(1): 2320. doi: 10.1038/ s41467-020-16134-7.

66. Holstein SA, Asimakopoulos F, Azab AK et al. Proceedings from the blood and marrow transplant clinical trials network myeloma intergroup workshop on immune and cellular therapy in multiple myeloma. Transplant Cell Ther 2022; 28(8): 446–454. doi: 10.1016/ j.jtct.2022.05.
019.

67. Maura F, Boyle EM, Rustad EH et al. Chromothripsis as a pathogenic driver of multiple myeloma. Semin Cell Dev Biol 2022; 123: 115–123. doi: 10.1016/ j.semcdb.2021.04.014.

68. Maclachlan KH, Rustad EH, Derkach A et al. Copy number signatures predict chromothripsis and clinical outcomes in newly dia­gnosed multiple myeloma. Nat Commun 2021; 12(1): 5172. doi: 10.1038/ s41467-021-254
69-8.

69. Smetana J, Oppelt J, Štork M et al. Chromothripsis 18 in multiple myeloma patient with rapid extramedullary relapse. Mol Cytogenet 2018; 11: 7. doi: 10.1186/ s13039-018-0357-5.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 1

2024 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#