#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Repopulation of decellularized pig scaffolds: Promising approach for liver tissue engineering


Authors: V. Liška 1,2;  V. Moulisová 1;  R. Pálek 1,2;  J. Rosendorf 1,2;  L. Červenková 1,3;  L. Bolek 4;  V. Třeška 2
Published in: Rozhl. Chir., 2019, roč. 98, č. 10, s. 388-393.
Category: Review

Overview

Repopulation of decellularized tissue with cells is a very promising approach in tissue engineering, with liver tissue engineering not being an exception. Decellularized liver scaffolds can serve as an excellent 3D environment for recellularization as it maintain tissue-specific microarchitecture of ECM proteins with important spatial cues for cell adhesion, migration, growth and differentiation. Moreover, by using autologous cells the newly constructed graft should lack immunogenicity in the host organism and thus eliminate the need for immunosuppressive therapy in the post-transplant period. This review provides an overview of liver decellularization and repopulation experiments done so far while highlighting the advances as well as pin-pointing the challenges that remain to be solved.

Keywords:

liver – decellularization – extracellular matrix – repopulation – transplantation


Sources

1 Pimpin L, Cortez-Pinto H, Negro F, et al. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies. Journal of Hepatology 2018;69:718–35. doi:10.1016/j.jhep.2018.05.011.

2 Dutkowski P, Oberkofler CE, Bechir M, et al. The model for end-stage liver disease allocation system for liver transplantation saves lives, but increases morbidity and cost: A prospective outcome analysis. Liver Transplant. 2011;17:674–84. doi:10.1002/lt.22228.

3 Mazza G, Al-Akkad W, Rombouts K, et al. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun. 2018;2:131–41. doi:10.1002/hep4.1136.

4 Faulk DM, Wildemann JD, Badylak SF. Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. Journal of Clinical and Experimental Hepatology 2015;5:69–80. doi:https://doi.org/10.1016/j.jceh.2014.03.043.

5 Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: From processing techniques to applications. Biomed Res Int. 2017:13. doi:10.1155/2017/9831534.

6 Soto-Gutierrez A, Zhang L, Medberry C, et al. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C-Methods 2011;17:677–86. doi:10.1089/ten.tec.2010.0698.

7 Struecker B, Butter A, Hillebrandt K, et al. Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions. J Tissue Eng Regen Med. 2017;11:531–41. doi:10.1002/term.1948.

8 Baptista PM, Siddiqui MM, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011;53:604–17. doi:10.1002/hep.24067.

9 Kajbafzadeh AM, Javan-Farazmand N, Monajemzadeh M, et al. Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue. Tissue engineering. Part C Methods 2013;19:642–51. doi:10.1089/ten.TEC.2012.0334.

10 Struecker B, Hillebrandt KH, Voitl R, et al. Porcine liver decellularization under oscillating pressure conditions: A technical refinement to improve the homogeneity of the decellularization process. Tissue Eng Part C Methods 2015;21:303–13. doi:10.1089/ten.tec.2014.0321.

11 Wu Q, Bao J, Zhou YJ, et al. Optimizing perfusion-decellularization methods of porcine livers for clinical-scale whole-organ bioengineering. Biomed Res Int. 2015:9. doi:10.1155/2015/785474.

12 Mazza G, Rombouts K, Hall AR, et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Scientific Reports 2015;5:15. doi:10.1038/srep13079.

13 Wang A, Jank I, Wei W, et al. A novel surgical technique as a foundation for in vivo partial liver engineering in rat. J Vis Exp. 2018. doi:10.3791/57991.

14 Mirmalek-Sani S-H, Sullivan DC, Zimmerman C, et al. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. The American Journal of Pathology 2013;183:558–65. doi:https://doi.org/10.1016/j.ajpath.2013.05.002.

15 Mao S, Glorioso J, Elgilani F, et al. Sustained in vivo perfusion of a re-endothelialized tissue engineered porcine liver. Transplantation Research and Medicine 2017;3. doi:10.23937/2572–4045.1510031.

16 Uygun BE, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine 2010;16:814–20. doi:10.1038/nm.2170.

17 Mazza G, Al-Akkad W, Telese A, et al. Ra­pid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization. Scientific Reports 2017;7:5534. doi:10.1038/s41598-017-05134-1.

18 Maghsoudlou P, Georgiades F, Smith H, et al. Optimization of liver decellularization maintains extracellular matrix micro-architecture and composition predisposing to effective cell seeding. PLoS One 2016;11:19. doi: 10.1371/journal.pone.0155324.

19 Hussein KH, Saleh T, Ahmed E, et al. Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering. J Biomed Mater Res. Part A 2018;106:2034–47. doi:10.1002/jbm.a.36407.

20 Mouw JK, Ou GQ, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology 2014;15:771–85. doi:10.1038/nrm3902.

21 Ogiso S, Yasuchika K, Fukumitsu K, et al. Efficient recellularisation of decellularised whole-liver grafts using biliary tree and foetal hepatocytes. Scientific Reports 2016;6. doi:10.1038/srep35887.

22 Kadota Y, Yagi H, Inomata K, et al. Mesenchymal stem cells support hepatocyte function in engineered liver grafts. Organogenesis 2014;10:268–77. doi:10.4161/org.27879.

23 Shirakigawa N, Takei T, Ijima H. Base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering. J Biosci Bioeng. 2013;116:740–5. doi:10.1016/j.jbiosc.2013.05.020.

24 Navarro-Tableros V, Herrera Sanchez MB, Figliolini F, et al. Recellularization of rat liver scaffolds by human liver stem cells. Tissue engineering. Part A 2015;21:1929–39. doi:10.1089/ten.TEA.2014.0573.

25 Park KM, Hussein KH, Hong SH, et al. Decellularized liver extracellular matrix as promising tools for transplantable bioengineered liver promotes hepatic lineage commitments of induced pluripotent stem cells. Tissue engineering. Part A 2016;22:449–60. doi:10.1089/ten.TEA.2015.0313.

26 Ko IK, Peng L, Peloso A, et al. Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials 2015;40:72–9. doi: 10.1016/j.biomaterials.2014.11.027.

27 Hussein KH, Park KM, Kang KS, et al. He­parin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers. Acta Biomater. 2016;38:82–93. doi:10.1016/j.actbio.2016.04.042.

28 Minami T, Ishii T, Yasuchika K, et al. Novel hybrid three-dimensional artificial liver using human induced pluripotent stem cells and a rat decellularized liver scaffold. Regenerative Therapy 2019;10:127–33. doi:10.1016/j.reth.2019.03.002.

29 Bao J, Shi Y, Sun H, et al. Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell Transplant. 2011;20:753–66. doi:10.3727/096368910x536572.

Labels
Surgery Orthopaedics Trauma surgery
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#