#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

How the epidemiology of rotavirus infections is changing with vaccination in the Czech Republic


Authors: M. Špačková 1,2;  M. Liptáková 1;  J. Košťálová 1;  K. Fabiánová 1;  J. Kynčl 1;  R. Chlíbek 2
Authors‘ workplace: Oddělení epidemiologie infekčních nemocí, Centrum epidemiologie a mikrobiologie, Státní zdravotní ústav, Praha 1;  Katedra epidemiologie, Vojenská lékařská fakulta Univerzity obrany, Hradec Králové 2
Published in: Epidemiol. Mikrobiol. Imunol. 74, 2025, č. 2, s. 87-96
Category: Original Papers
doi: https://doi.org/10.61568/emi/11-6492/20250428/140414

Overview

Aim: To describe the epidemiological situation of rotavirus gastroenteritis (RVGE) and the impact of vaccination on hospitalization for RVGE in the Czech Republic in 2018–2023.

Methods: A descriptive analysis was performed of anonymized RVGE cases reported under code A08.0 to the Infectious Diseases Reporting System (ISIN) in the Czech Republic in 2018–2023. The Chi-square test was used to analyse binary variables. The effect of vaccination on hospitalization was assessed using logistic regression with odds ratio (OR) and 95% confidence interval. Excel, STATA, and Datawrapper GmbH programs were used. The incidence of the disease was calculated per 100,000 population.

Results: In the monitored period, a total of 26,303 RVGE cases were reported in the Czech Republic (range 1,811–7,483 per year), which corresponds to an average annual incidence of 41.0 (range 16.9–69.6) per 100,000 population. Fifty-one percent of cases occurred in women. The average annual sex-specific incidence rates were comparable. Patients were aged 0–101 years (median 3 years, interquartile range [IQR] 1–8 years). The maximum numbers of cases were recorded in the months of March to June. In the pandemic years 2020 and 2021, the overall numbers of cases were lower, and therefore the seasonality was less expressed. The average annual specific incidence was highest in the Vysočina, South Bohemian and Olomouc Regions. A total of 18,693 (71.1%) cases of RVGE were hospitalized, most of them in the age groups 1–4 years (34.7%) and 5–9 years (11.9%). Vaccination data were available for 21,142 individuals with RVGE, of whom 304 (1.4%) were reported as vaccinated. The risk of hospitalization for RVGE was statistically significantly lower (p < 0.001) in vaccinated than in unvaccinated individuals. A total of 27 RVGE outbreaks were reported, with the largest one involving 152 cases. Two hundred and twenty-six cases were classified as imported.

Conclusions: After the introduction of RVGE vaccination in the Czech Republic, a reduction in RVGE cases, hospitalizations, and deaths was expected. However, a significant impact of vaccination on the RVGE burden has not yet been observed in the country. The main reason continues to be low RVGE vaccine coverage. We therefore recommend including this voluntary vaccination in the schedule covered by health insurance and also call for early communication of the appropriateness of such vaccination between the paediatric/adolescent medicine practitioners and children’s parents.

Keywords:

prevention – vaccination – Rotavirus – descriptive epidemiology – viral gastroenteritis


Sources
  1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159):1736–1788.
  2. Troeger C, Khalil IA, Rao PC, et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr., 2018, 172(10): 958–965.
  3. O’Ryan M. The ever-changing landscape of rotavirus serotypes.Pediatr Infect Dis J., 2009, 28(3 Suppl):S60–62.
  4. International Committee on Taxonomy of Viruses: Virus Taxonomy: 2020 Release. [online, cit. 2024-11_08]. Dostupné na: <https://ictv.global/taxonomy>
  5. Sadiq A, Bostan N, Jadoon Khan, et al. Effect of rotavirus genetic diversity on vaccine impact. Rev Med Virol., 2022, 32(1):e2259.
  6. Matthijnssens J, Ciarlet M, Heiman E, et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol., 2008, 82(7):3204– 3219.
  7. Bwogi J, Jere KC, Karamagi C, et al. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains. PLoS One, 2017, 12(6):e0178855.
  8. Johne R, Schilling-Loeffler K, Ulrich RG, et al. Whole Genome Sequence Analysis of a Prototype Strain of the Novel Putative Rotavirus Species L. Viruses, 2022,14(3):462.
  9. Wu FT, Liu LT, Jiang B, et al. Prevalence and diversity of rotavirus A in pigs: Evidence for a possible reservoir in human infection. Infect Genet Evol., 2022, 98,105198.
  1. Dóró R, Farkas SL, Martella V, et al. Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther. 2015,13(11):1337–1350.
  2. Malik YS, Bhat S, Dar PS, et al. Evolving rotaviruses, interspecies transmission and Zoonoses. Open Virol J., 2020,14:1–6.
  3. Stuempfig ND, Seroy J. Viral Gastroenteritis. In: StatPearls [online]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. PMID: 30085537.
  4. Franco MA, Greenberg HB. Rotaviruses, Noroviruses, and Other Gastrointestinal Viruses. In: Goldman‘s Cecil Medicine 24Ed International edition. Elsevier. 2012:2144–2147. ISBN10.0808924370.
  5. Rainetová P. Virové střevní infekce – virové gastroenteritidy. Pediatrie pro praxi, 2017,18(1):44–49.
  6. Glass RI, Parashar UD, Bresee JS, et al. Rotavirus vaccines: current prospects and future challenges. Lancet, 2006,368(9532):323– 332.
  7. Anderson EJ, Weber SG. Rotavirus infection in adults. Lancet Infect Dis., 2004,4(2):91–99.
  8. Crawford SE, Ramani S, Tate JE, et al. Rotavirus infection. Nat Rev Dis Primers, 2017,3:17083.
  9. Beneš J, et al. Infekční lékařství. Galén, Praha 2009.
  10. Rayani A, Bode U, Habas E, et al. Rotavirus infections in paediatric oncology patients: a matched-pairs analysis. Scand J Gastroenterol. 2007,42(1):81–87.
  11. Oliveira CS, Linhares AC. Rotavírus: aspectos clínicos e prevenção [Rotavirus: clinical features and prevention]. J Pediatr (Rio J), 1999,75 Suppl 1:S91–S102.
  12. Dong Y, Zeng CQ, Ball JM, et al. The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1,4,5-trisphosphate production. Proc Natl Acad Sci U S A, 1997, 94(8):3960–3965.
  13. Řezanina M. Typizace a molekulární epidemiologie lidských a prasečích kmenů rotaviru A aktuálně cirkulujících v ČR. [online]. Diplomová práce. Brno: Masarykova univerzita, Přírodovědecká fakulta. 2019. Dostupné na: <https://theses.cz/id/ l5n009/>
  14. Flynn TG, Olortegui MP, Kosek MN. Viral gastroenteritis. Lancet, 2024,403(10429):862–876.
  15. Dennehy PH. Rotavirus vaccines: an overview. Clin Microbiol Rev., 2008,21(1):198–208.
  16. Dennehy PH. Treatment and prevention of rotavirus infection in children. Curr Infect Dis Rep., 2013,15(3):242–250.
  17. Daley SF, Avva U. Pediatric Dehydration. [Updated 2024 Jun 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Dostupné na: https://www.ncbi.nlm.nih.gov/ books/NBK436022/
  18. Li D, Gu AZ, He M, et al. UV inactivation and resistance of rotavirus evaluated by integrated cell culture and real-time RT-PCR assay. Water Res., 2009,43(13):3261–3269.
  19. Ojeh CK, Cusack TM, Yolken RH. Evaluation of the effects of disinfectants on rotavirus RNA and infectivity by the polymerase chain reaction and cell-culture methods. Mol Cell Probes., 1995,9(5):341–346.
  20. Spackova M, Altmann D, Eckmanns T, et al. High level of gastrointestinal nosocomial infections in the german surveillance system, 2002–2008. Infect Control Hosp Epidemiol. 2010;31(12):1273-8.
  21. Ogilvie I, Khoury H, Goetghebeur MM, et al. Burden of community-acquired and nosocomial rotavirus gastroenteritis in the pediatric population of Western Europe: a scoping review. BMC Infect Dis., 2012,12:62.
  22. Burnett E, Parashar UD, Tate JE. Real-world effectiveness of rotavirus vaccines, 2006–19: a literature review and meta-analysis. Lancet Glob Health, 2020,8(9):e1195–e1202.
  23. Xu X, Luo Y, He C, et al. Increased Risk of Neurological Disease Following Pediatric Rotavirus Infection: A Two-Center Case-Control Study. J Infect Dis., 2023,227(11):1313–1321.
  24. Dian Z, Sun Y, Zhang G, et al. Rotavirus-related systemic diseases: clinical manifestation, evidence and pathogenesis. Crit Rev Microbiol., 202,47(5):580–595.
  25. Dornbusch HJ, Vesikari T, Guarino A, et al. Rotavirus vaccination for all children or subgroups only? Comment of the European Academy of Paediatrics (EAP) and the European Society for Paediatric Infectious Diseases (ESPID) recommendation group for rotavirus vaccination. Eur J Pediatr., 2020,179(9):1489–1493.
  26. Parez N, Giaquinto C, Du Roure C, et al. Rotavirus vaccination in Europe: drivers and barriers. Lancet Infect Dis, 2014,14(5):416–425.
  27. European Centre for Disease Prevention and Control. ECDC Expert opinion on rotavirus vaccination in infancy. Stockholm: ECDC; 2017.
  28. Česká vakcinologická společnost ČLS JEP. Doporučení pro očkování proti rotavirovým infekcím v České republice. Aktualizované doporučení České vakcinologické společnosti ČLS JEP, 2019.
  29. Špačková M, Gašpárek M. Míra proočkovanosti proti rotavirovým gastroenteritidám v Evropě a výskyt rotavirových gastroenteritid v České republice v období 1997–2017. Zprávy CEM, 2018,27(7–8):190–194.
  30. Peer V, Schwartz N, Green MS. A Pooled Analysis of Sex Differences in Rotaviral Enteritis Incidence Rates in Three Countries Over Different Time Periods. Womens Health Rep (New Rochelle), 2022,3(1):228–237.
  31. Burnett E, Parashar UD, Winn A, et al. Trends in Rotavirus Laboratory Detections and Internet Search Volume Before and After Rotavirus Vaccine Introduction and in the Context of the Coronavirus Disease 2019 Pandemic-United States, 2000–2021. J Infect Dis., 2022,226(6):967–974.
  32. Bergman H, Henschke N, Hungerford D, et al. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev., 2021,11(11):CD008521.
  33. Burke RM, Tate JE, Kirkwood CD, et al. Current and new rotavirus vaccines. Curr Opin Infect Dis., 2019,32(5):435–444.
  34. Tichopád A, Müllerová J, Jackowska T, et al. Cost Burden of Severe Community –Acquired Rotavirus Gastroenteritis Requiring Hospitalization in the Czech Republic, Slovakia, Poland, and Hungary: A Retrospective Patient Chart Review. Value Health Reg Issues, 2016,10:53–60.
  35. de Hoog MLA, Vesikari T, Giaquinto C, et al. Report of the 5th European expert meeting on rotavirus vaccination (EEROVAC). Hum Vaccin Immunother., 2018,14(4):1027–1034.
  36. Cohen R, Martinón-Torres F, Posiuniene I, et al. The Value of Rotavirus Vaccination in Europe: A Call for Action. Infect Dis Ther., 2023,12(1):9–29.
  37. World Health Organization. Rotavirus vaccines: an update. Wkly Epidemiol Rec., 2009,84(50):533–540.
  38. World Health Organisation. Rotavirus vaccines. Wkly Epidemiol Rec, 2007,82(32):285–295.
  39. Špačková M, Gašpárek M, Chlíbek R. Výskyt rotavirových gastroenteritid v České republice v letech 2008–2018 a význam očkování. Vakcinologie, 2019,13(2):50–56.
  40. Cabrnochová H. Dopady novinek do očkování v ordinacích PLDD. XIX. Hradecké vakcinologické dny, 2024 [online]. Dostupné na: <https://www.vakcinace.eu/prednasky/xix-hradecke-vakcinologicke-dny-2024>
  41. World Health Organisation. Rotavirus vaccines: WHO position paper – July 2021. Wkly Epidemiol Rec., 2021,96(28):301–219.
  42. Markkula J, Hemming-Harlo M, Savolainen-Kopra C, et al. Continuing rotavirus circulation in children and adults despite high coverage rotavirus vaccination in Finland. J Infect., 2020,80(1):76–83.

Poděkování

Autoři by rádi poděkovali Mgr. Ivě Vlčkové z Národního referenčního centra pro analýzu epidemiologických dat Státního zdravotního ústavu v Praze za poskytnutí podrobných dat ze systému ISIN.

Podpořeno

Podpořeno MZ ČR – RVO (Státní zdravotní ústav – SZÚ, 75010330).

Konflikt zájmů

Žádný.

Do redakce došlo dne 2. 1. 2025.

Adresa pro korespondenci:
MUDr. Michaela Špačková, Ph.D.
Oddělení epidemiologie infekčních nemocí CEM
Státní zdravotní ústav Šrobárova 49/48 100 00 Praha 10
e-mail:
michaela.spackova@szu.cz

Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#