#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Tixagevimab-cilgavimab eff ectiveness in preexposure prophylaxis and therapy in patients at high risk of COVID-19


Authors: B. Weinbergerová;  T. Kabut;  J. Mayer
Authors‘ workplace: Interní hematologická a onkologická klinika LF MU a FN Brno
Published in: Transfuze Hematol. dnes,28, 2022, No. 4, p. 195-201.
Category: Review/Educational Papers
doi: https://doi.org/10.48095/cctahd2022prolekare.cz14

Overview

COVID-19 caused by SARS-CoV-2 is a life-threatening global pandemic disease that has led to high mortality for over two years. Elderly individuals with comorbidities and immunocompromised patients are particularly at risk. Scientifi c research eff orts are therefore intensively focused on the development and optimization of COVID-19 treatment. Early treatment with SARS-CoV-2-neutralizing monoclonal antibodies has been shown to be eff ective both in vitro and in clinical practice in patients at high risk of disease progression to severe COVID-19. This paper summarizes the potential clinical benefi ts of the recently approved monoclonal antibody combination tixagevimab and cilgavimab for COVID-19 prevention and treatment.

Keywords:

vaccination – Monoclonal antibodies – therapy – COVID-19 – tixagevimab – cilgavimab – preexposure prophylaxis – immunocompromised haematological patient


Sources

1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard https:/ / covid19.who. int/ . (přístupné: 17.06.2022).

2. Centers of Disease Control and Prevention. SARS-CoV-2 Variant Classifi cations and Defi nitions. https:/ / www.cdc.gov/ coronavirus/ 2019- ncov/ variants/ variant-classifications.html#anchor_ 1632154493691. (přístupné: 17.06.2022).

3. Nealon J, Cowling BJ. Omicron severity: milder but not mild. Lancet. 2022;399:412–413.

4. Dejnirattisai W, Huo J, Zhou D, et al. SARS- -CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 2022;185:467–484.

5. McCallum M, Czudnochowski N, Rosen LE, et al. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science. 2022;375:864–868.

6. Nutalai R, Zhou D, Tuekprakhon A, et al. Potent cross-reactive antibodies following Omicron breakthrough in vaccinees. Cell. 2022;185(12):2116–2131.e18.

7. European Centre for Disease Prevention and Control. Epidemiological update: SARS- -CoV-2 Omicron sub-lineages BA.4 and BA.5. https:/ / www.ecdc.europa.eu/ en/ news-events/ epidemiological-update-sars-cov-2-omicron- -sub-lineages-ba4-and-ba5. (přístupné: 17.06. 2022).

8. Iketani S, Liu L, Guo Y, et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature. 2022;604(7906):553–556.

9. Piechotta V, Harder T. Waning of COVID-19 vaccine eff ectiveness: individual and public health risk. Lancet. 2022;399:887–889.

10. WHO Working Group on the Clinical Characterisation Management of COVID-19 Infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis. 2020;20:e192–e197.

11. Juthani PV, Gupta A, Borges KA, et al. Hospitalisation among vaccine breakthrough COVID-19 infections. Lancet Infect Dis. 2021;21: 1485–1486.

12. Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021;21:855.

13. Dougan M, Nirula A, Azizad M, et al. Bamlanivimab plus etesevimab in mild or moderate COVID-19. N Engl J Med. 2021;385:1382–1392.

14. Antonelli M, Penfold RS, Merino J, et al. Risk factors and disease profi le of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community- -based, nested, case-control study. Lancet Infect Dis. 2022;22:43–55.

15. Agrawal U, Katikireddi SV, McCowan C, et al. COVID-19 hospital admissions and deaths after BNT162b2 and ChAdOx1 nCoV-19 vaccinations in 2·57 million people in Scotland (EAVE II): a prospective cohort study. Lancet Respir Med. 2021;9:1439–1449.

16. Hippisley-Cox J, Coupland CA, Mehta N, et al. Risk prediction of covid-19 related death and hospital admission in adults after COVID-19 vaccination: national prospective cohort study. BMJ. 2021;374:n2244.

17. Egan C, Turtle L, Thorpe M, Harrison EM, Semple MG, Docherty AB. Hospital admission for symptomatic COVID-19 and impact of vaccination: analysis of linked data from the Coronavirus Clinical Information Network and the National Immunisation Management Service. Anaesthesia. 2022;77:605–608.

18. Blennow O, Salmanton-García J, Nowak P, et al. Outcome of infection with omicron SARS- -CoV-2 variant in patients with hematological malignancies: An EPICOVIDEHA survey report. Am J Haematol. 2022. doi: 10.1002/ ajh.26626. Online ahead of print.

19. Kemp SA, Collier DA, Datir RP, et al. SARS- -CoV-2 evolution during treatment of chronic infection. Nature. 2021;592:277–282.

20. Our World in Data. Coronavirus (COVID-19) vaccinations. https:/ / ourworldindata.org/ covid- -vaccinations. (přístupné: 17.06.2022).

21. Danza P, Koo TH, Haddix M, et al. SARS- -CoV-2 infection and hospitalization among adults aged ≥18 years, by vaccination status, before and during SARS-CoV-2 B.1.1.529 (omicron) variant predominance – Los Angeles County, California, November 7, 2021– January 8, 2022. MMWR Morb Mortal Wkly Rep. 2022;71: 177–181.

22. Iacobucci G. Covid-19: How is vaccination aff ecting hospital admissions and deaths? BMJ. 2021;374:n2306.

23. Vijenthira A, Gong IY, Fox TA, et al. Outcomes of patients with hematologic malignancies and COVID-19: a systematic review and meta-analysis of 3377 patients. Blood. 2020;136(25):2881–2892.

24. Pagano L, Salmanton-García J, Marchesi F, et al. COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA). J Hematol Oncol. 2021;14(1):168.

25. Marchesi F, Salmanton-García J, Emarah Z, et al. COVID-19 in adult acute myeloid leukemia patients: a long-term followup study from the European Hematology Association survey (EPICOVIDEHA). Haematologica. 2022. doi: 10.3324/ haematol.2022.280847. Online ahead of print.

26. Busca A, Salmanton-García J, Corradini P, et al. COVID-19 and CAR T cells: a report on current challenges and future directions from the EPICOVIDEHA survey by EHA-IDWP. Blood Adv. 2022;6(7):2427–2433.

27. Weinbergerova B, Mayer J, Kabut T, et al. Successful early treatment combining remdesivir with high-titer convalescent plasma among COVID- 19-infected hematological patients. Hematol Oncol. 2021;39(5):715–720.

28. Šušol O, Hájková B, Mihályová J, et al. Prvních 50 COVID-19 pozitivních pacientů na Klinice hematoonkologie Fakultní nemocnice Ostrava v roce 2020. Transfuze Hematol. Dnes. 2021;27(4):323-329.

29. Pagano L, Salmanton-García J, Marchesi F, et al. COVID-19 in vaccinated adult patients with hematological malignancies: preliminary results from EPICOVIDEHA. Blood. 2022;139(10): 1588–1592.

30. Weinbergerová B, Demel I, Víšek B, et al. Successful early use of anti-SARS-CoV-2 monoclonal neutralizing antibodies in SARS- -CoV-2 infected hematological patients – A Czech multicenter experience. Hematol Oncol. 2022;40(2):280–286.

31. Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021; 385:1941–1950.

32. Weinreich DM, Sivapalasingam S, Norton T, et al. REGEN-COV antibody combination and outcomes in outpatients with COVID-19. N Engl J Med. 2021;385:e81.

33. National Institutes of Health. Therapeutic management of nonhospitalized adults with COVID-19. https:/ / www.covid19treatmentguidelines. nih.gov/ management/ clinical-management/ nonhospitalized-adults--therapeutic-management/ .(přístupné: 17.06.2022).

34. Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N Engl J Med. 2022;386:1397–1408.

35. Kmietowicz Z. Covid-19: Monoclonal antibodies authorised in US as alternative to vaccines for certain groups. BMJ. 2021;375:n3064.

36. Dougan M, Nirula A, Azizad M, et al. Bamlanivimab plus etesevimab in mild or moderate Covid-19. N Engl J Med. 2021;385(15): 1382–1392.

37. Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med. 2021;384(3):238–251.

38. Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021;385(21):1941–1950.

39. VanBlargan LA, Errico JM, Halfmann PJ, et al. An infectious SARS-CoV-2 B.1.1.529 omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med. 2022;28: 490–495.

40. Loo YM, McTamney PM, Arends RH, et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci Transl Med. 2022;14(635):eabl8124.

41. Levin MJ, Ustianowski A, De Wit S, et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for prevention of Covid-19. N Engl J Med. 2022;386(23):2188–2200.

42. O’Brien MP, Forleo-Neto E, Musser BJ, et al. Subcutaneous REGEN-COV antibody combination to prevent COVID-19. N Engl J Med. 2021;385:1184–1195.

43. US Food and Drug Administration. Fact sheet for health care providers: emergency use authorization (EUA) of bamlanivimab and etesevimab. https:/ / www.fda.gov/ media/ 145802/ download. (přístupné: 17.06.2022).

44. Montgomery H, Hobbs FDR, Padilla F, et al. Efficacy and safety of intramuscular administration of tixagevimab-cilgavimab for early outpatient treatment of COVID-19 (TACKLE): a phase 3, randomised, double-blind, placebo- controlled trial. Lancet Respir Med. 2022;S2213-2600(22)00180-1.

45. Bruel T, Hadjadj J, Maes P, et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nature medicine. 2022;doi: 10.1038/ s41591-022- 01792-5. Online ahead of print.

46. Dong J, Zost S, Greaney A, et al. Genetic and structural basis for recognition of SARS- -CoV-2 spike protein by a two-antibody cocktail. Nature Microbio l. 2021;6:1233–1244.

47. Tuekprakhon A, Huo J, Nutalai R, et al. Further antibody escape by Omicron BA.4 and BA.5 from vaccine and BA.1 serum. bio Rxiv. doi: https:/ / doi.org/ 10.1101/ 2022.05.21.492554.

48. US Food and Drug Administration. Fact sheet for healthcare providers: emergency use authorization for Evusheld™ (tixagevimab co- -packaged with cilgavimab). https:/ / www. fda.gov/ media/ 154701/ download. (přístupné: 17.06.2022).

49. Ministerstvo zdravotnictví České republiky. Rozhodnutí o dočasném povolení distribuce, výdeje a používání neregistrovaného humánního léčivého přípravku EVUSHELD. https:/ / www. mzcr.cz/ wp-content/ uploads/ 2022/ 03/ Rozhodnuti- o-docasnem-povoleni-distribuce-vydeje- -a-pouzivani-neregistrovaneho-humanniho-LP- -EVUSHELD.pdf. (přístupné: 17.06.2022).

50. Stuver R, Shah GL, Korde NS, et al. Activity of AZD7442 (tixagevimab-cilgavimab) against Omicron SARS-CoV-2 in patients with hematologic malignancies. Cancer Cell. 2022;S1535-6108(22)00218-5.

51. Conte WL, Golzarri-Arroyo L. Tixagevimab and Cilgavimab (Evusheld) boosts antibody levels to SARS-CoV-2 in patients with multiple sclerosis on b-cell depleters. Mult Scler Relat Disord. 2022;63:103905.

52. Karaba AH, Kim JD, Chiang TPY, et al. Omicron BA.1 and BA.2 neutralizing activity fol lowing pre-exposure prophylaxis with Tixagevimab plus Cilgavimab in vaccinated solid organ transplant recipients. medRxiv. doi: 2022.05.24.22275467.

53. Jurdi AA, Morena L, Cote M, Bethea E, Azzi J, Riella LV. Tixagevimab/ cilgavimab pre-exposure prophylaxis is associated with lower breakthrough infection risk in vaccinated solid organ transplant recipients during the Omicron wave. medRxiv. doi:10.1101/ 2022.05.17.22274 980.

Labels
Haematology Internal medicine Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#