#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Radiopharmaceuticals for imaging gliomas using positron emission tomography


Authors: Irena Macků
Authors‘ workplace: Masarykův onkologický ústav Brno, ČR
Published in: NuklMed 2017;6:8-15
Category: Review Article

Overview

Gliomas belong to primary tumors of brain tissue arising from glial cells. Generally, we distinguish benign low grade ones and malignant high grade tumors. The imaging method of choice is a magnetic resonance, potentially complemented with PET/CT, and an examining of a histological specimen. This paper summarizes an overview of PET radiopharmaceuticals for gliomas imaging. They are divided into three groups based on mechanism of their accumulation: altered tumor metabolism, tumor hypoxia or overexpression of certain receptors.

Key words:
PET, gliomas, radiopharmaceuticals


Sources

1. Fadrus P, Šlampa P, Lakomý R et al. Komplexní terapie gliomů mozku. Onkologie 2015;9:214-217

2. Rohren EM, Turkington TG, Coleman RE. Clinical Applications of PET in Oncology. Radiology 2004;231:305-332

3. Wiebe LI. FDG Metabolism: Quaecumque Sunt Vera J Nucl Med 2001;42:1679-1681

4. Pirotte B, Goldman S, Massager N et al. Comparison of 18F-FDG and 11C-Methionine for PET-Guided Stereotactic Brain Biopsy of Gliomas. J Nucl Med 2004;45:1293-1298

5. Saha GB. Fundamentals of Nuclear Pharmacy – 6th edition. Springer Verlag, New York, 2010,409 p

6. Chen W. Clinical Applications of PET in Brain Tumors. J Nucl Med 2007;48:1468-1481

7. Fulham MJ, Brunetti A, Aloj L et al. Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids. J Neurosurg 1995;83:657-664

8. The EANM Technologist Comittee. Testanera G, van der Broek WJ (Editors). Principles and Practice of PET/CT - A Technologist‘s Guide, Part 2. Vienna, European Association of Nuclear Medicine, 2011,163 p

9. Smits A, Baumert BG. The Clinical Value of PET with Amino Acid Tracers for Gliomas WHO Grade II. Int J Mol Imaging 2011;2011:372509. doi:10.1155/2011/372509

10. Langen KJ, Jarosch M, Mühlensiepen H et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 2003;30:501-508

11. Pöpperl G, Kreth FW, Herms J et al. Analysis of 18F-FET PET for Grading of Recurrent Gliomas: Is Evaluation of Uptake Kinetics Superior to Standard Methods? J Nucl Med 2006;47:393-403

12. Gempt J, Bette S, Ryang YM et al. 18F-fluoro-ethyl-tyrosine positron emission tomography for grading and estimation of prognosis in patients with intracranial gliomas. Eur J Radiol 2015;84:955-962

13. Narayanan T, Said S, Mukherjee J et al. A Comparative Study on the Uptake and Incorporation of Radiolabeled Methionine, Choline and Fluorodeoxyglucose in Human Astrocytoma. Mol Imaging Biol 2002;4:147-156

14. Langen KJ, Ziemons K, Kiwit JC et al. 3-[123I]Iodo-α-Methyltyrosine and [Methyl-11C]-L-Methionine Uptake in Cerebral Gliomas: A Comparative Study Using SPECT and PET. J Nucl Med 1997;38:517-522

15. Shishido H, Kawai N, Yamamoto Y et al. Diagnostic value of 11C-methionine (MET) and 18F-fluorothymidine (FLT) positron emission tomography in recurrent high-grade gliomas: Differentiation from treatment-induced tissue necrosis. J Nucl Med 2012;53(suppl.1):1988

16. Ribom D, Eriksson A, Hartman M et al. Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 2001;92:1541-1549

17. Cicuendez M, Lorenzo-Bosquet C, Cuberas-Borrós G et al. Role of [11C] methionine positron emission tomography in the diagnosis and prediction of survival in brain tumours. Clin Neurol Neurosurg 2015;139:328-333

18. Beggs AD, Hain SF. Localization of parathyroid adenomas using 11C-methionine positron emission tomography. Nucl Med Commun 2005;26:133-136

19. Pauleit D, Stoffels G, Schaden W et al. PET with O-(2-18F-Fluoroethyl)-l-Tyrosine in Peripheral Tumors: First Clinical Results. J Nucl Med 2005;46:411-416

20. Nowosielski M, DiFranco MD, Putzer D et al. An Intra-Individual Comparison of MRI, [18F]-FET and [18F]-FLT PET in Patients with High-Grade Gliomas. PLOS ONE 2014;9:1-8

21. Langen KJ, Hamacher K, Weckesser M et al. O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006;33:287-294

22. Pauleit D, Stoffels G, Bachofner A et al. Comparison of 18F-FET and 18F-FDG PET in brain tumors. Nucl Med Biol 2009;36:779-787

23. Weber W, Wester H, Grosu A et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000;27:542-549

24. Pöpperl G, Götz C, Rachinger W et al. Value of O-(2-[18F]fluoroethyl)-l-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004;31:1464-1470

25. Jager PL, Vaalburg W, Pruim J et al. Radiolabeled Amino Acids: Basic Aspects and Clinical Applications in Oncology. J Nucl Med 2001;42:432-445

26. Chen W, Silverman DH, Delaloye S et al. 18F-FDOPA PET Imaging of Brain Tumors: Comparison Study with 18F-FDG PET and Evaluation of Diagnostic Accuracy. J Nucl Med 2006;47:904-911

27. Chevalme YM, Montravers F, Vuillez JP et al. FDOPA-(18F): a PET radiopharmaceutical recently registered for diagnostic use in countries of the European Union. Braz Arch Biol Technol 2007;50:77-90

28. Becherer A, Karanikas G, Szabó M et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 2003;30:1561-1567

29. Wells J, Mankoff D, Muzi M et al. Kinetic analysis of 2-[11C]thymidine PET imaging studies of malignant brain tumors: compartmental model investigation and mathematical analysis. Mol Imaging 2002;1:151-159

30. Muzi M, Spence AM, O‘Sullivan F et al. Kinetic Analysis of 3′-Deoxy-3′-18F-Fluorothymidine in Patients with Gliomas. J Nucl Med 2006;47:1612-1621

31. Grierson JR, Schwartz JL, Muzi M et al. Metabolism of 3‘-deoxy-3‘-[F-18]fluorothymidine in proliferating A549 cells: Validations for positron emission tomography. Nucl Med Biol 2004;31:829-837

32. Laymon CM, Oborski MJ, Lee VK et al. Combined imaging biomarkers for therapy evaluation in glioblastoma multiforme: correlating sodium MRI and F-18 FLT PET on a voxel-wise basis. Magn Reson Imaging 2012;30:1268-1278

33. Jeong SY, Lim SM. Comparison of 3‘-deoxy-3‘-[18F]fluorothymidine PET and O-(2-[18F]fluoroethyl)-L-tyrosine PET in patients with newly diagnosed glioma. Nucl Med Biol 2012;39:977-981

34. Giovannini E, Lazzeri P, Milano A et al. Clinical Applications of Choline PET/CT in Brain Tumors. Curr Pharm Des 2015;21:121-127

35. Kato T, Shinoda J, Nakayama N et al. Metabolic Assessment of Gliomas Using 11C-Methionine, [18F] Fluorodeoxyglucose, and 11C-Choline Positron-Emission Tomography. Am J Neuroradiol 2008;29:1176-1182

36. Tian M, Zhang H, Oriuchi N et al. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 2004;31:1064-1072

37. Huang Z, Zuo C, Guan Y et al. Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours. Nucl Med Commun 2008;29:354-358

38. Tan H, Chen L, Guan Y et al. Comparison of MRI, F-18 FDG, and 11C-Choline PET/CT for Their Potentials in Differentiating Brain Tumor Recurrence From Brain Tumor Necrosis Following Radiotherapy. Clin Nucl Med 2011;36:978-981

39. Kwee SA, DeGrado TR, Talbot JN et al. Cancer Imaging With Fluorine-18-Labeled Choline Derivatives. Semin Nucl Med 2007;37:420-428

40. Hara T, Kondo T, Hara T et al. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 2003;99:474-9

41. Liu RS, Chang CP, Chu LS et al. PET imaging of brain astrocytoma with 1-11C-acetate. Eur J Nucl Med Mol Imaging 2006;33:420-427

42. Yamamoto Y, Nishiyama Y, Kimura N et al. 1C-Acetate PET in the Evaluation of Brain Glioma: Comparison with 11C-Methionine and 18F-FDG-PET. Mol Imaging Biol 2008;10:281

43. Krohn KA, Link JM, Mason RP. Molecular Imaging of Hypoxia. J Nucl Med 2008;49(suppl 2):129S-148S

44. Bruehlmeier M, Roelcke U, Schubiger PA et al. Assessment of Hypoxia and Perfusion in Human Brain Tumors Using PET with 18F-Fluoromisonidazole and 15O-H2O. J Nucl Med 2004;45:1851-1859

45. Mönnich D, Troost EGC, Kaanders JHAM. Modelling and simulation of [ 18 F]fluoromisonidazole dynamics based on histology-derived microvessel maps. Phys Med Biol 2011;56:2045

46. Rajendran JG, Wilson DC, Conrad EU et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 2003;30:695-704

47. Eschmann SM, Paulsen F, Reimold M et al. Prognostic Impact of Hypoxia Imaging with 18F-Misonidazole PET in Non-Small Cell Lung Cancer and Head and Neck Cancer Before Radiotherapy. J Nucl Med 2005;46:253-260

48. Postema EJ, McEwan AJB, Riauka TA et al. Initial results of hypoxia imaging using 1-alpha-D-(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging 2009;36:1565-1573

49. Sorger D, Patt M, Kumar P et al. [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 2003;30:317-326

50. Koch CJ, Scheuermann JS, Divgi C et al. Biodistribution and dosimetry of 18F-EF5 in cancer patients with preliminary comparison of 18F-EF5 uptake versus EF5 binding in human glioblastoma. Eur J Nucl Med Mol Imaging 2010;37:2048-2059

51. Yang DJ, Wallace S, Cherif A et al. Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 1995;194:795-800

52. Zanzonico P, O‘Donoghue J, Chapman JD et al. Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning. Eur J Nucl Med Mol Imaging 2004;31:117-128

53. Lapi SE, Lewis JS, Dehdashti F. Evaluation of Hypoxia With Copper-Labeled Diacetyl-bis(N-Methylthiosemicarbazone). Semin Nucl Med 2015;45:177-185

54. Zhang T, Das SK, Fels DR et al. PET with 62Cu-ATSM and 62Cu-PTSM Is a Useful Imaging Tool for Hypoxia and Perfusion in Pulmonary Lesions. Am J Roentgenol 2013;201:698-706

55. Sharma P, Mukherjee A, Bal C et al. Somatostatin Receptor–Based PET/CT of Intracranial Tumors: A Potential Area of Application for 68Ga-DOTA Peptides? Am J Roentgenol 2013;201:1340-1347

56. Heute D, Kostron H, von Guggenberg E et al. Response of Recurrent High-Grade Glioma to Treatment with 90Y-DOTATOC. J Nucl Med 2010;51:397-400

57. Sharma P, Dhull VS, Bal C et al. Von Hippel-Lindau Syndrome: Demonstration of Entire Disease Spectrum with 68Ga-DOTANOC PET-CT. Korean J Radiol 2014;15:169-172

58. Passah A, Tripathi M, Kumar R et al. Brain Metastasis in Carcinoma Breast Demonstrated on 68Ga NOTA-Bisphosphonate PET/CT. Clin Nucl Med 2014;39:653-654

59. Wang Z, Zhang M, Wang L et al. Study of 68Ga-NOTA-NFB: Radiation Dosimetry in Healthy Volunteers and First Application in Glioma Patients. J Nucl Med 2015;56(suppl 3):11

60. Chen K, Cai W, Li ZB et al. Quantitative PET Imaging of VEGF Receptor Expression. Mol Imaging Biol 2009;11:15-22

61. Schnell O, Krebs B, Carlsen J et al. Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro-oncol 2009;11:861-870

62. Li D, Zhao X, Zhang L et al. 68Ga-PRGD2 PET/CT in the Evaluation of Glioma: A Prospective Study. Mol Pharm 2014;11:3923-3929

63. Iagaru A, Mosci C, Mittra E et al. Glioblastoma Multiforme Recurrence: An Exploratory Study of 18F FPPRGD2 PET/CT. Radiology 2015;277:497-506

64. Yu C, Pan D, Mi B et al. 18F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases. Eur J Nucl Med Mol Imaging 2015;42:2021-2028

Labels
Nuclear medicine Radiodiagnostics Radiotherapy
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#