#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Bone mineral content, subcutaneous and visceral adipose tissue volumetric measurements: A pilot study in routine computed tomography examinations


Authors: Kuchař Michal 1;  Morávek Alexander 1;  Rejtar Pavel 2;  Henyš Petr 3
Authors‘ workplace: Ústav anatomie LF UK v Hradci Králové 1;  Radiologická klinika LF UK a FN Hradec Králové 2;  Ústav nových technologií a aplikované informatiky, Fakulta mechatroniky, informatiky a mezioborových studií, Technická univerzita v Liberci 3
Published in: Clinical Osteology 2021; 26(4): 200-208
Category:

Overview

Nowadays, an increasing number of studies examine the effect of both subcutaneous and visceral fat on the quality of human life. In addition to the already proven relationship to cardiovascular disease, the question of the interrelationship between the content and quality of fatty tissue on the bone is also open. The mineral content of the pelvic bone, attenuation coefficients and volumetric values of subcutaneous and visceral fat were examined on a set of routine CT examinations of 55 patients at the University Hospital Hradec Králové. The results showed a positive relationship between fat deposits and mineral content, as well as a significant effect of overall bone size.

Keywords:

Adipose tissue – finite element method – mineral content – pelvic bone


Sources
  1. Wardlaw GM. Putting body weight and osteoporosis into perspective. Am J Clin Nutr 1996; 63(3 Suppl): 433S-436S. Dostupné z DOI: <http://dx.doi.org/10.1093/ajcn/63.3.433>.
  2. Edelstein SL, Barrett-Connor E. Relation between Body-Size and Bone-Mineral Density in Elderly Men and Women. Am J  Epidemiol 1993; 138(3): 160–169. Dostupné z  DOI: <http://dx.doi.org/10.1093/ oxfordjournals.aje.a116842>.
  3. Reid IR. Relationships among body mass, its components, and bone. Bone 2002; 31(5): 547–555. Dostupné z  DOI: <http://dx.doi. org/10.1016/s8756–3282(02)00864–5>.
  4. Reid IR, Ames R, Evans MC et al. Determinants of Total-Body and Regional Bone-Mineral Density in Normal Postmenopausal Women – a Key Role for Fat Mass. J Clin Endocrinol Metab 1992; 75(1): 45–51. Dostupné z DOI: <http://dx.doi.org/10.1210/jcem.75.1.1619030>.
  5. Zhao LJ, Jiang H, Papasian CJ et al. Correlation of obesity and osteoporosis: Effect of fat mass on the determination of osteoporosis. J Bone Miner Res 2008; 23(1): 17–29. <http://dx.doi.org/10.1359/ jbmr.070813>.
  6. Matsuzawa Y. The metabolic syndrome and adipocytokines. Febs Letters 2006; 580(12): 2917–2921. Dostupné z DOI: <http://dx.doi.org/10.1016/j.febslet.2006.04.028>.
  7. Matsuzawa Y. Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med 2006; 3(1): 35–42. Dostupné z  DOI: <http://dx.doi.org/10.1038/ ncpcardio0380>.
  8. Matsuzawa Y. Adiponectin: A  Key Player in Obesity Related Disorders. Curr Pharm Des 2010; 16(17): 1896–1901. Dostupné z DOI: <http://dx.doi.org/10.2174/138161210791208893>.
  9. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose Expression of Tumor-Necrosis-Factor-Alpha  – Direct Role in Obesity-Linked Insulin Resistance. Science 1993; 259(5091): 87–91. Dostupné z  DOI: <http://dx.doi.org/10.1126/science.7678183>.
  10. Matsuzawa Y. Adiponectin: Identification, physiology and clinical relevance in metabolic and vascular disease. Atheroscler Suppl 2005; 6(2): 7–14. Dostupné z DOI: <http://dx.doi.org/10.1016/j.atherosclerosissup.2005.02.003>.
  11. Shimomura I, Funahashi T, Takahashi M  et al. Enhanced expression of PAI-1 in visceral fat: Possible contributor to vascular disease in obesity. Nat Med 1996; 2(7): 800–803. Dostupné z  DOI: <http:// dx.doi.org/10.1038/nm0796–800>.
  12. Steppan CM, Bailey ST, Bhat S  et al. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307–312. Dostupné z DOI: <http://dx.doi.org/10.1038/35053000>.
  13. Hug C, Lodish HF. Visfatin: A  new adipokine. Science 2005; 307(5708): 366–367. Dostupné z DOI: <http://dx.doi.org/10.1126/science.1106933>.
  14. Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 2007; 17(4): 319–326. Dostupné z  DOI: <http://dx.doi.org/10.1016/j.numecd.2006.07.005>.
  15. Pinthus JH, Kleinmann N, Tisdale B et al. Lower Plasma Adiponectin Levels Are Associated with Larger Tumor Size and Metastasis in Clear-Cell Carcinoma of the Kidney. Eur Urol 2008; 54(4): 866–873. Dostupné z DOI: <http://dx.doi.org/10.1016/j.eururo.2008.02.044>.
  16. Ducy P, Amling M, Takeda S et al. Leptin inhibits bone formation through a  hypothalamic relay: A  central control of bone mass. Cell 2000; 100(2): 197–207. Dostupné z  DOI: <http://dx.doi.org/10.1016/ s0092–8674(00)81558–5>.
  17. Williams GA, Wang Y, Callon KE et al. In Vitro and in Vivo Effects of Adiponectin on Bone. Endocrinology 2009; 150(8): 3603–3610. Dostupné z DOI: <http://dx.doi.org/10.1210/en.2008–1639>.
  18. Cawthon PM, Shahnazari M, Orwoll ES et al. Osteoporosis in men: findings from the Osteoporotic Fractures in Men Study (MrOS). Ther Adv Musculoskelet Dis 2016; 8(1): 15–27. Dostupné z  DOI: <http:// dx.doi.org/10.1177/1759720X15621227>.
  19. Nielson CM, Marshall LM, Adams AL et al. BMI and Fracture Risk in Older Men: The Osteoporotic Fractures in Men Study (MrOS). J Bone Miner Res 2011; 26(3): 496–502. Dostupné z  DOI: <http://dx.doi. org/10.1002/jbmr.235>.
  20. Sheu Y, Marshall ML, Holton KF et al. Abdominal body composition measured by quantitative computed tomography and risk of non- -spine fractures: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int 2013; 24(8): 2231–2241. Dostupné z DOI: <http://dx.doi. org/10.1007/s00198–013–2322–9>.
  21. Sollmann N, Franz D, Burian E  et al. Assessment of paraspinal muscle characteristics, lumbar BMD, and their associations in routine multi-detector CT of patients with and without osteoporotic vertebral fractures. Eur J  Radiol 2020; 125: 108867. Dostupné z  DOI: <http:// dx.doi.org/10.1016/j.ejrad.2020.108867>.
  22. Russell M, Mendes N, Miller KK et al. Visceral Fat Is a  Negative Predictor of Bone Density Measures in Obese Adolescent Girls. J Clin Endocrinol Metab 2010; 95(3): 1247–1255. Dostupné z  DOI: <http:// dx.doi.org/10.1210/jc.2009–1475>.
  23. de Paula FJ, de Araújo IM, Carvalho AL et al. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women. PLoS One 2015; 10(6): e0129764. Dostupné z DOI: <http:// dx.doi.org/10.1371/journal.pone.0129764>.
  24. Kaze AD, Rosen HN, Paik JM. A meta-analysis of the association between body mass index and risk of vertebral fracture. Osteoporos Int 2018; 29(1): 31–39. <http://dx.doi.org/10.1007/s00198–017– 4294–7>.
  25. Shuster A, Patlas M, Pinthus JH et al. The clinical importance of visceral adiposity: a  critical review of methods for visceral adipose tissue analysis. Br J  Radiol 2012; 85(1009): 1–10. Dostupné z  DOI: <http://dx.doi.org/10.1259/bjr/38447238>.
  26. Seidell JC, Bakker CJ, Vanderkooy K. Imaging Techniques for Measuring Adipose-Tissue Distribution  – a  Comparison between Computed-Tomography and 1.5-T Magnetic-Resonance. Am J  Clin Nutr 1990; 51(6): 953–957. Dostupné z  DOI: <http://dx.doi.org/10.1093/ ajcn/51.6.95>.
  27. Direk K, Cecelja M, Astle W et al. The relationship between DXA- -based and anthropometric measures of visceral fat and morbidity in women. BMC Cardiovasc Disord 2013; 13:25. Dostupné z DOI: <http:// dx.doi.org/10.1186/1471–2261–13–25>
  28. Jensen MD, Kanaley JA, Reed JE et al. Measurement of Abdominal and Visceral Fat with Computed-Tomography and Dual-Energy X-Ray Absorptiometry. Am J Clin Nutr 1995; 61(2): 274–278. Dostupné z DOI: <http://dx.doi.org/10.1093/ajcn/61.2.274>
  29. Jensen MD, Kanaley JA, Roust LR et al. Assessment of Body- -Composition with Use of Dual-Energy X-Ray Absorptiometry – Evaluation and Comparison with Other Methods. Mayo Clin Proc 1993; 68(9): 867–873. Dostupné z  DOI: <http://dx.doi.org/10.1016/s0025– 6196(12)60695–8>.
  30. Loffler MT, Sollmann N, Mei K et al. X-ray-based quantitative osteoporosis imaging at the spine. Osteopor Int 2020 31(2): 233–250. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–019–05212–2>.
  31. Engelke K. Quantitative Computed Tomography-Current Status and New Developments. J Clin Densitom 2017; 20(3): 309–321. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jocd.2017.06.017>.
  32. Loffler MT, Jacob A, Valentinitsch A  et al. Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol 2019; 29(9): 4980–4989. Dostupné z  DOI: <http:// dx.doi.org/10.1007/s00330–019–06018-w>.
  33. Winsor C, Qasim M, Henak CR et al. Evaluation of patient tissue selection methods for deriving equivalent density calibration for femoral bone quantitative CT analyses. Bone 2021; 143: 115759. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bone.2020.115759>.
  34. Tse JJ, Smith AC, Kuczynski MT et al. Advancements in Osteoporosis Imaging, Screening, and Study of Disease Etiology. Curr Osteoporos Rep 2021; 19(5): 532–541. Dostupné z  DOI: <http://dx.doi. org/10.1007/s11914–021–00699–3>.
  35. Prentice A, Parsons TJ, Cole TJ. Uncritical Use of Bone-Mineral Density in Absorptiometry May Lead to Size-Related Artifacts in the Identification of Bone-Mineral Determinants. Am J  Clin Nutr 1994; 60(6): 837–842. Dostupné z  DOI: <http://dx.doi.org/10.1093/ ajcn/60.6.837>.
  36. Afghani A, Goran MI. Racial differences in the association of subcutaneous and visceral fat on bone mineral content in prepubertal children. Calcif Tissue Int 2006;79(6): 383–388. Dostupné z DOI: <http:// dx.doi.org/10.1007/s00223–006–0116–1>.
  37. Glass NA, Torner JC, Letuchy EM et al. Does Visceral or Subcutaneous Fat Influence Peripheral Cortical Bone Strength During Adolescence? A Longitudinal Study. J Bone Miner Res 2018; 33(4): 580–588. Dostupné z DOI: <http://dx.doi.org/10.1002/jbmr.3325>.
  38. Crivelli M, Chain A, da Silva IT et al. Association of Visceral and Subcutaneous Fat Mass With Bone Density and Vertebral Fractures in Women With Severe Obesity. J Clin Densitom 2021; 24(3): 397–405. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jocd.2020.10.005>.
  39. El Hage R, Jacob C, Moussa E et al. Relative importance of lean mass and fat mass on bone mineral density in a group of Lebanese postmenopausal women. J Clin Densitom 2011; 14(3): 326–331. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jocd.2011.04.002>
  40. Ryl A, Rotter I, Szylińska A  et al. Complex interplay among fat, lean tissue, bone mineral density and bone turnover markers in older men. Aging (Albany NY) 2020; 12(19): 19539–19545. Dostupné z DOI: <http://dx.doi.org/10.18632/aging.103903>.
  41. Kim JH, Choi HJ, Kim MJ et al. Fat mass is negatively associated with bone mineral content in Koreans. Osteoporos Int 2012; 23(7): 2009–2016. Dostupné z  DOI: <http://dx.doi.org/10.1007/s00198– 011–1808–6>.
  42. Pauchard Y, Fitze T, Browarnik D et al. Interactive graph-cut segmentation for fast creation of finite element models from clinical ct data for hip fracture prediction. Comput Methods Biomech Biomed Engin 2016; 19(16): 1693–1703. Dostupné z DOI: <http://dx.doi.org10.1 080/10255842.2016.1181173>.
  43. Michalski AS, Besler BA, Michalak GJ et al. CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans. Med Eng Phys 2020; 78: 55–63. Dostupné z DOI: <http:// dx.doi.org/10.1016/j.medengphy.2020.01.009>
  44. Looker AC, Borrud LG, Hughes JH et al. Total body bone area, bone mineral content, and bone mineral density f or individuals aged 8 years and over: United States, 1999–2006. Vital Health Stat 2013; 11(253): 1–78.
  45. Scott JA. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues: ICRU Report 46. International Commission on Radiation Units and Measurements, Bethesda 1992. Soc Nuclear Med/J Nuclear Med 1993.
  46. Henyš P, Vořechovský M, Kuchař M  et al. Bone mineral density modeling via random field: normality, stationarity, sex and age dependence. Comput Methods Programs Biomed 2021; 210: 106353. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cmpb.2021.106353>.
  47. Henyš P, Kuchař M, Hájek P et al. Mechanical metric for skeletal biomechanics derived from spectral analysis of stiffness matrix. Sci Rep 2021; 11(1): 15690. Dostupné z  DOI: <http://dx.doi.org/10.1038/ s41598–021–94998–5>.
  48. Taylor M, Prendergast PJ. Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? J Biomech 2015; 48(5): 767–778. Dostupné z DOI: <http://dx.doi. org/10.1016/j.jbiomech.2014.12.019>.
  49. Kuchar M, Henyš P, Rejtar P  et al. Shape morphing technique can accurately predict pelvic bone landmarks. Int J Legal Med 2021; 135(4): 1617–1626. Dostupné z  DOI: <http://dx.doi.org/10.1007/ s00414–021–02501–6>
  50. Ball SD, Swan PD. Accuracy of estimating intra-abdominal fat in obese women. JEPonline 2003; 6(4):1–7.
  51. Hassan EB, Demontiero O, Vogrin S et al. Marrow Adipose Tissue in Older Men: Association with Visceral and Subcutaneous Fat, Bone Volume, Metabolism, and Inflammation. Calcif Tissue Int 2018; 103(2): 164–174. Dostupné z  DOI: <http://dx.doi.org/10.1007/s00223–018– 0412–6>.
  52. Pieper S, Halle M, Kikinis R. 3D Slicer. 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821). VOLs 1 and 2, 2004: 632–635. Dostupné z DOI: <http://doi: 10.1109/isbi.2004.1398617 Corpus ID: 228577>.
  53. Baba S, Jacene HA, Engles JM et al. CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med 2010; 51(2): 246–250. Dostupné z DOI: <http://dx.doi. org/10.2967/jnumed.109.068775>.
  54. Houchun HH, Chung SA, Nayak KS et al. Differential computed tomographic attenuation of metabolically active and inactive adipose tissues: preliminary findings. J  Comput Assist Tomogr2011; 35(1): 65–71. Dostupné z DOI: <http://dx.doi.org/10.1097/ RCT.0b013e3181fc2150>.
Labels
Clinical biochemistry Paediatric gynaecology Paediatric radiology Paediatric rheumatology Endocrinology Gynaecology and obstetrics Internal medicine Orthopaedics General practitioner for adults Radiodiagnostics Rehabilitation Rheumatology Traumatology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#