#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Current Possibilities for Predicting Responses to EGFR Blockade in Metastatic Colorectal Cancer


Authors: R. Němeček 1;  M. Svoboda 1,2;  O. Slabý 1,3
Authors‘ workplace: Klinika komplexní onkologické péče LF MU a Masarykův onkologický ústav, Brno 1;  Oddělení epidemiologie a genetiky nádorů, Masarykův onkologický ústav, Brno 2;  CEITEC –  Středoevropský technologický institut, MU, Brno 3
Published in: Klin Onkol 2016; 29(3): 187-195
Category: Reviews
doi: https://doi.org/10.14735/amko2016187

Overview

Background:
The combination of modern systemic chemotherapy and anti-EGFR monoclonal antibodies improves overall survival and quality of life for patients with metastatic colorecal cancer. By contrast, the addition of anti-EGFR therapy to the treatment regime of resistant patients may lead to worse progression-free survival and overall survival. Therefore, identifying sensitive and resistant patients prior to targeted therapy of metastatic colorecal cancer is a key point during the initial decision making process. Previous research shows that primary resistance to EGFR blockade is in most cases caused by constitutive activation of signaling pathways downstream of EGFR. Of all relevant factors (mutation of KRAS, NRAS, BRAF, and PIK3CA oncogenes, inactivation of tumor suppressors PTEN and TP53, amplification of EGFR and HER2, and expression of epiregulin and amphiregulin, mikroRNA miR-31-3p, and miR-31-5p), only evaluation of KRAS and NRAS mutations has entered routine clinical practice. The role of the other markers still needs to be validated. The ongoing benefit of anti-EGFR therapy could be indicated by specific clinical parameters measured after the initiation of targeted therapy, including early tumor shrinkage, the deepness of the response, or hypomagnesemia. The accuracy of predictive dia­gnostic tools could be also increased by examining a combination of predictive markers using next generation sequencing methods. However, unjustified investigation of many molecular markers should be resisted as this may complicate interpretation of the results, particularly in terms of their specific clinical relevance.

Aim:
The aim of this review is to describe current possibilities with respect to predicting responses to EGFR blockade in the context of the EGFR pathway, and the utilization of such results in routine clinical practice.

Key words:
colorectal cancer –  cetuximab –  panitumumab –  EGFR –  KRAS –  BRAF

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted:
20. 3. 2016

Accepted:
19. 4. 2016


Sources

1. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359– E386. doi: 10.1002/ ijc.29210.

2. Český národní webový portál epidemiologie nádorů. Masarykova univerzita, Česká republika 2006. [online]. Dostupný z: www.svod.cz.

3. Van Cutsem E, Cervantes A, Nordlinger B et al. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for dia­gnosis, treatment and follow-up. Ann Oncol 2014; 25 (Suppl 3): 1– 9. doi: 10.1093/ annonc/ mdu260.

4. Tay RY, Wong R, Hawkes EA. Treatment of metastatic colorectal cancer: focus on panitumumab. Cancer Manag Res 2015; 24(7): 189– 198. doi: 10.2147/ CMAR.S71821.

5. Khattak MA, Martin H, Davidson A et al. Role of first-line anti-epidermal growth factor receptor therapy compared with anti-vascular endothelial growth factor therapy in advanced colorectal cancer: a meta-analysis of randomized clinical trials. Clin Colorectal Cancer 2015; 14(2): 81– 90. doi: 10.1016/ j.clcc.2014.12.011.

6. Douillard JY, Oliner KS, Siena S et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013; 369(11): 1023– 1034. doi: 10.1056/ NEJMoa1305275.

7. Heinemann V, von Weikersthal LF, Decker T et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15(10): 1065– 1075. doi: 10.1016/ S1470-2045(14)70330-4.

8. Custodio A, Barriuso J, de Castro J et al. Molecular markers to predict outcome to antiangiogenic therapies in colorectal cancer: current evidence and future perspectives. Cancer Treat Rev 2013; 39(8): 908– 924. doi: 10.1016/ j.ctrv.2013.02.004.

9. Mirone G, Shukla A, Marfe G. Signaling mechanisms of resistance to EGFR-and Anti-Angiogenic Inhibitors cancer. Crit Rev Oncol Hematol 2016; 97: 85– 95. doi: 10.1016/ j.critrevonc.2015.08.012.

10. Lievre A, Bachet JB, Le Corre D et al. KRAS station status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006; 66(8): 3992– 3995.

11. Karapetis CS, Khambata-Ford S, Jonker DJ et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359(17): 1757– 1765. doi: 10.1056/ NEJMoa0804385.

12. Misale S, Di Nicolantonio F, Sartore-Bianchi A et al. Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov 2014; 4(11): 1269– 1280. doi: 10.1158/ 2159-8290.CD-14-0462.

13. Normanno N, De Luca A, Bianco C et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006; 366(1): 2– 16.

14. Luo HY, Xu RH. Predictive and prognostic bio­markers with therapeutictargets in advanced colorectal cancer. World J Gastroenterol 2014; 20(14): 3858– 3874. doi: 10.3748/ wjg.v20.i14.3858.

15. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2(2): 127– 137.

16. Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of EGF domains for ErbB receptors. FEBS Lett 1999; 447(2– 3): 227– 231.

17. Normanno N, Tejpar S, Morgillo F et al. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 2009; 6(9): 519– 527. doi: 10.1038/ nrclinonc.2009.111.

18. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487(7407): 330– 337. doi: 10.1038/ nature11252.

19. Van Cutsem E, Kohne CH, Hitre E et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360: 1408– 1417. doi: 10.1056/ NEJMoa0805019.

20. Amado RG, Wolf M, Peeters M et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(10): 1626– 1634. doi: 10.1200/ JCO.2007.14.7116.

21. Douillard JY, Siena S, Cassidy J et al. Final results from PRIME: randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol 2014; 25(7): 1346– 1355. doi: 10.1093/ annonc/ mdu141.

22. Ciardiello F, Lenz HJ, Kohne CH et al. Treatment outcome according to tumor RAS mutation status in CRYSTAL study patients with metastatic colorectal cancer (mCRC) randomized to FOLFIRI with/ without cetuximab. J Clin Oncol 2014; 32 (Suppl 5): abstr. 3506.

23. Bokemeyer C, Kohne CH, Ciardiello F et al. Treatment outcome according to tumor RAS mutation status in OPUS study patients with metastatic colorectal cancer (mCRC) randomized to FOLFOX4 with/ without cetuximab. J Clin Oncol 2014; 32 (Suppl 5): abstr. 3505.

24. Stintzing S, Modest DP, von Weikersthal LF et al. Independent radiological evaluation of objective response, early tumor shrinkage, and depth of response in FIRE-3 (AIO KRK-0306) in the final RAS evaluable population. Ann Oncol 2014; 25: 1– 41: abstr. LBA11.

25. Venook AP, Niedzwiecki D, Lenz HJ et al. CALGB/ SWOG 80405: phase III trial of irinotecan/ 5-FU/ leucovorin (FOLFIRI) or oxaliplatin/ 5-FU/ leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol 2014; 32 (Suppl 5): abstr. LBA3.

26. Sorich MJ, Wiese MD, Rowland A et al. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol 2015; 26(1): 13– 21. doi: 10.1093/ annonc/ mdu378.

27. Pakneshan S, Salajegheh A, Smith RA et al. Clinicopathological relevance of BRAF mutations in human cancer. Pathology 2013; 45(4): 346– 356. doi: 10.1097/ PAT.0b013e328360b61d.

28. Ikenoue T, Hikiba Y, Kanai F et al. Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res 2003; 63(23): 8132– 8137.

29. Bosnan F, Yan P. Molecular pathology of colorectal cancer. Pol J Pathol 2014; 65(4): 257– 266.

30. Thiel A, Riskimaki A. Toward a molecular classification of colorectal cancer: the role of BRAF. Front Oncol 2013; 3: 281. doi: 10.3389/ fonc.2013.00281.

31. Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009; 361(1): 98– 99. doi: 10.1056/ NEJMc0904160.

32. Therkildsen C, Bergmann TK, Henrichsen-Schnack Tet al. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol 2014; 53(7): 852– 864. doi: 10.3109/ 0284186X.2014.895036.

33. Yang ZY, Wu XY, Huang YF et al. Promising bio­markers for predicting the outcomes of patients with KRAS wild-type metastatic colorectal cancer treated with anti-epidermal growth factor receptor monoclonal antibodies: a systematic review with meta-analysis. Int J Cancer 2013; 133(8): 1914– 1925. doi: 10.1002/ ijc.28153.

34. Di Nicolantonio F, Martini M, Molinari F et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008; 26(35): 5705– 5712. doi: 10.1200/ JCO.2008.18.0786.

35. De Roock W, Claes B, Bernasconi D et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11(8): 753– 762. doi: 10.1016/ S1470-2045(10)70130-3.

36. Laurent-Puig P, Cayre A, Manceau G et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 2009; 27(35): 5924– 5930. doi: 10.1200/ JCO.2008.21.6796.

37. Modest DP, Jung A, Moosmann N et al. The influence of KRAS and BRAF mutations on the efficacy of cetuximab-based first-line therapy of metastatic colorectal cancer: an analysis of the AIO KRK-0104-trial. Int J Cancer 2012; 131(4): 980– 986. doi: 10.1002/ ijc.26467.

38. Smith CG, Fisher D, Claes B et al. Somatic profiling of the epidermal growth factor receptor pathway in tumors from patients with advanced colorectal cancer treated with chemotherapy ± cetuximab. Clin Cancer Res 2013; 19(15): 4104– 4113. doi: 10.1158/ 1078-0432.CCR-12-2581.

39. Bokemeyer C, Van Cutsem E, Rougier P et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012; 48(10): 1466– 1475. doi: 10.1016/ j.ejca.2012.02.057.

40. Saridaki Z, Tzardi M, Sfakianaki M et al. BRAFV600E mutation analysis in patients with metastatic colorectal cancer (mCRC) in daily clinical practice: correlations with clinical characteristics, and its impact on patients’ outcome. PLoS One 2013; 8(12): e84604. doi: 10.1371/ journal.pone.0084604.

41. Montagut C, Bellosillo B, Gonzalez I et al. Evolution of heterogeneous mechanisms of acquired resistance to cetuximab-based therapy in colorectal cancer. J Clin Oncol 2014; 32 (Suppl 5): abstr. 3526.

42. Misale S, Arena S, Lamba S et al. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci Transl Med 2014; 6(224): 224– 226. doi: 10.1126/ scitranslmed.3007947.

43. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2(7): 489– 501.

44. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M et al. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010; 11(5): 329– 341. doi: 10.1038/ nrm2882.

45. De Roock W, Claes B, Bernasconi D et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11(8): 753– 762. doi: 10.1016/ S1470-2045(10)70130-3.

46. Sartore-Bianchi A, Martini M, Molinari F et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFRmonoclonal antibodies. Cancer Res 2009; 69(5): 1851– 1857. doi: 10.1158/ 0008-5472.CAN-08-2466.

47. Prenen H, De Schutter J, Jacobs B et al. PIK3CA mutations are not a major determinant of resistence to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res 2009; 15(9): 3184– 3188. doi: 10.1158/ 1078-0432.CCR-08-2961.

48. Huang L, Liu Z, Deng D et al. Anti-epidermal growth factor receptor monoclonal antibody-based therapy for metastatic colorectal cancer: a meta-analysis of the effect of PIK3CA mutations in KRAS wild-type patients. Arch Med Sci 2014; 10(1): 1– 9. doi: 10.5114/ aoms.2014.40728.

49. Siena S, Sartore-Bianchi A, Di Nicolantonio F et al. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 2009; 101(19): 1308– 1324. doi: 10.1093/ jnci/ djp280.

50. Cully M, You H, Levine AJ et al. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006; 6(3): 184– 192.

51. Loupakis F, Pollina L, Stasi I et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 2009; 27(16): 2622– 2629. doi: 10.1200/ JCO.2008.20.2796.

52. Jacobs B, De Roock W, Piessevaux H et al. Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol 2009; 27(30): 5068– 5074. doi: 10.1200/ JCO.2008.21.3744.

53. Seymour MT, Brown SR, Middleton G et al. Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol 2013; 14(8): 749– 759. doi: 10.1016/ S1470-2045(13)70163-3.

54. Seligmann JF, Elliott F, Richman SD et al. Combined epiregulin (EGFR) and amphiregulin (AREG) expression levels as a bio­marker of prognosis and panitumumab benefit in RAS-wt advanced colorectal cancer (aCRC). J Clin Oncol 2014; 32 (Suppl 5): abstr. 3520.

55. Bertotti A, Migliardi G, Galimi F et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov 2011; 1(6): 508– 523. doi: 10.1158/ 2159-8290.CD-11-0109.

56. Yonesaka K, Zejnullahu K, Okamoto I et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med 2011; 3(99): 99ra86. doi: 10.1126/ scitranslmed.3002442.

57. Martin V, Landi L, Molinari F et al. HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patiens. Br J Cancer 2013; 108(3): 668– 675. doi: 10.1038/ bjc.2013.4.

58. Cushman SM, Jiang C, Hatch AJ et al. Gene expres­sion markers of efficacy and resistance to cetuximab treatment in metastatic colorectal cancer: Results from CALGB 80203 (Alliance). Clin Cancer Res 2015; 21(5): 1078– 1086. doi: 10.1158/ 1078-0432.CCR-14-2313.

59. Cunningham D, Hublet Y, Siena S et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351(4): 337– 345.

60. Saltz LB, Meropol NJ, Loehrer PJ Sr et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004; 22(7): 1201– 1208.

61. Chung KY, Shia J, Kemeny NE et al: Cetuximab shows aktivity in colorectal cancer patients with tumor that do not express the epidermal growth factor receptor by imunohistochemistry. J Clin Oncol 2005; 23(9): 1803– 1810.

62. Moroni M, Veronese S, Benvenuti S et al. Gene copy number for epidermal growth factor erceptor (EGFR) and clinical response to anti-EGFR treatment in colorectal cancer: a cohort study. Lancet Oncology 2005; 6(5): 279– 286.

63. Capuzzo F, Finochiaro G, Rossi E et al. EGFR FISH assay predicts for response to cetuximab in chemotherapy refraktory colorectal cancer patients. Ann Oncol 2008; 19(4): 717– 723.

64. Sartore-Bianchi A, Moroni M, Veronese S et al. Epidermal growth factor receptor gene number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol 2007; 25(22): 3238– 3245.

65. Sartore-Bianchi A, Fieuws S, Veronese S et al. Standardization of EGFR FISH in colorectal cancer: Results of an international, interlaboratory reproducibility ring study. J Clin Pathol 2012; 65(3): 218– 223. doi: 10.1136/ jclinpath-2011-200353.

66. Sartore-Bianchi A, Di Nicolantonio F, Nichelatti M et al. Multideterminants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One 2009; 4(10): 7287. doi: 10.1371/ journal.pone.0007287.

67. Oliner K, Peeters M, Siena S et al. Evaluation of the gene mutations beyond KRAS as predictive bio­markers or response to panitumumab in a randomized, phase III monotherapy study of metastatic colorectal cancer (mCRC). J Clin Oncol 2011; 29 (Suppl): abstr. 3530.

68. Bewrlin J, Van Cutsem E, Peeters M et al. Predictive value of skin toxicity severity for response to panitumumab in patients with metastatic colorectal cancer (mCRC): a pooled analysis of five clinical trials. J Clin Oncol 2007; 25 (Suppl): abstr. 4134.

69. Peeters M, Siena S, Van Cutsem E et al. Association of progression-free survival, overal survival, and patient-reported outcomes by skin toxicity and KRAS status in patients receiving panitumumab monotherapy. Cancer 2009; 115(7): 1544– 1554. doi: 10.1002/ cncr.24088.

70. O’Callaghan CJ, Tu D, Karapetis CS et al. The relationship between the development of rash and clinical and health-related quality of life outcomes by KRAS mutation status in patients with colorectal cancer treated with cetuximab in NCI CTG CO.17. J Clin Oncol 2011; 29 (Suppl): abstr. 3588.

71. Van Cutsem E, Tejpar S, Vanbeckevoort D et al. Intrapatient cetuximab dose escalation in metastatic colorectal cancer according to the grade of early skin reactions: the randomized EVEREST study. J Clin Oncol 2012; 30(23): 2861– 2868. doi: 10.1200/ JCO.2011.40.9243.

72. Pérez-Soler R, Saltz L. Cutaneous adverse effects with HER1/ EGFR targeted agents: is there a silver lining? J Clin Oncol 2005; 23(22): 5235– 5246.

73. Personeni N, Hendlisz A, Gallez J et al. Correlation between the response to cetuximab alone or in combination with irinotecan and the activated/ phosphorylated epidermal growth factor receptor in metastatic colorectal cancer. Semin Oncol 2005; 32 (Suppl 9): 59– 62.

74. Stinzing S, Kapaun C, Laubender RP et al. Prognostic value of cetuximab-related skin toxicity in metastatic colorectal cancer patients and its correlation with parameters of the epidermal growth factor receptor signal transduction pathway: results from a randomized trial of the GERMAN AIO CRC Study Group. Int J Cancer 2013; 132(1): 236– 245. doi: 10.1002/ ijc.27654.

75. Petrelli F, Borgonovo K, Cabiddu M et al. Risk of anti-EGFR monoclonal antibody-related hypomagnesemia: systematic reviewand pooled analysis of randomized studies. Expert Opin Drug Saf 2012; 11 (Suppl 1): S9– S19. doi: 10.1517/ 14740338.2011.606213.

76. Vincenzi B, Santini D, Galluzzo S et al. Early magnesium reduction in advanced colorectal cancer patients treated with cetuximab plus irinotecan as predictive factor of efficacy and outcome. Clin Cancer Res 2008; 14(13): 4219– 4224. doi: 10.1158/ 1078-0432.CCR-08-0077.

77. Vincenzi B, Galluzzo S, Santini S et al. Early magnesium modifications as a surrogate marker of efficacy of cetuximab-based anticancer treatment in KRAS wild-type advanced colorectal cancer patients. Ann Oncol 2011; 22(5): 1141– 1146. doi: 10.1093/ annonc/ mdq550.

78. Vickers MM, Karapetis CS, Tu D et al. The influence of hypomagnesemia (hMg) on over­all survival (OS) in a phase III randomized study of cetuximab (CET) plus best supportive care (BSC) versus BSC: NCIC CTG/ AGITG CO.17. J Clin Oncol 2011; 29 (Suppl): abstr. 3601.

79. Holubec L, Liška V, Fínek J et al. The importance of early tumor shrinkage and deepness of response in assessing the efficacy of systemic anticancer treatment with metastatic colorectal cancer. Klin Onkol 2015; 28(2): 89– 93. doi: 10.14735/ amko201589.

80. Nishino M, Jagannathan JP, Krajewski KM et al. Personalized tumor response assessment in the era of molecular medicine: cancer-specific and therapy-specific response criteria to complement pitfalls of RECIST. Am J Roentgenol 2012; 198(4): 737– 745. doi: 10.2214/ AJR.11.7483.

81. Piessevaux H, Van Cutsem E, Bokemeyer C et al. Early tumor shrikage and long-term outcome in metastatic colorectal cancer (mCRC): assessment of predictive utility across treatment arms in the CRYSTAL and OPUS studies. J Clin Oncol 2011; 29 (Suppl): abstr. 3572.

82. Oden-Gangloff A, Di Fiore F, Bibeau F et al. TP53 mutations predict disease control in metastatic colorectal cancer treated with cetuximabbased chemotherapy. Br J Cancer 2009; 100(8): 1330– 1335. doi: 10.1038/ sj.bjc.6605008.

83. Lupini L, Bassi C, Mlcochova J et al. Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients. BMC Cancer 2015; 15: 808. doi: 10.1186/ s12885-015-1752-5.

84. Mlcochova J, Faltejskova P, Nemecek R et al. Micro-RNAs targeting EGFR signalling pathway in colorectal cancer. J Cancer Res Clin Oncol 2013; 139(10): 1615– 1624. doi: 10.1007/ s00432-013-1470-9.

85. Mosakhani N, Lahti L, Borze I et al. MicroRNA profil­ing predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet 2012; 205(11): 545– 551. doi: 10.1016/ j.cancergen.2012.08.003.

86. Mlčochová J, Vychytilová P, Ferracin M et al. MicroRNA expression profiling identifies miR-31-5p/ 3p as associated with time to progression in wild-type RAS metastatic colorectal cancer treated with cetuximab. Oncotarget 2015; 6(36): 38695– 38704. doi: 10.18632/ oncotarget.5735.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#