#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Immunotherapy for the Prevention and Treatment of Breast Cancer


Authors: Svoboda M.  1 4;  J. Navrátil 1;  O. Slabý 1,3
Authors‘ workplace: Klinika komplexní onkologické péče, Masarykův onkologický ústav, Brno 1;  Oddělení epidemiologie a genetiky nádorů, Masarykův onkologický ústav, Brno 2;  CEITEC –  Středoevropský technologický institut, MU, Brno 3;  Lékařská fakulta, MU, Brno 4
Published in: Klin Onkol 2015; 28(6): 416-425
Category: Reviews
doi: https://doi.org/10.14735/amko2015416

Overview

The immune system is believed to play a dual role in carcinogenesis. On one hand, it could prompt tumorigenesis and cancer progression, on the other hand, it has the capacity to eradicate tumor cells. There has been an evidence of natural immunogenicity in breast cancer and we have also witnessed several attempts to stimulate non-specific antitumor immune response (Coley’s toxin, BCG vaccine etc.). New technologies and further knowledge of molecular basis of immune system and its function encouraged the development of effective immunotherapy capable of inducing a solid antitumor activity. These agents appear promissing in the prevention and therapy of breast carcinoma as well. The assumption is based on the results of several antitumor vaccine trials targeted against HER2, MUC1, CEA and mammaglobin-A, as well as immune checkpoint inhibitors (e.g. CTLA-4, PD-1/ PD-L1, LAG3). With regards to different mech­anisms of action of these agents, their combination might bring about synergistic antitumor effects. Nonetheless, monoclonal antibodies and cytostatic agents already approved for breast cancer treatment might be exploited for their immunomodulation effect as well. This article addresses prospects for immunotherapy of breast carcinoma in detail.

Key words:
immunotherapy –  breast cancer –  prevention –  vaccine –  immune checkpoints

This work was supported by grant MH CZ – RVO (MMCI, 00209805) and No. NT/14599-32013.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted:
12. 11. 2015

Accepted:
26. 11. 2015


Sources

1. Disis ML, Stanton SE. Can im­munity to breast cancer eliminate residual micrometastases? Clin Cancer Res 2013; 19(23): 6398– 6403. doi: 10.1158/ 1078-0432.CCR-13-0734.

2. Cimino-Mathews A, Foote JB, Emens LA. Im­mune target­ing in breast cancer. Oncology (Wil­liston Park) 2015; 29(5): 375– 385.

3. Ernst B, Anderson KS. Im­munotherapy for the treatment of breast cancer. Curr Oncol Rep 2015; 17(2): 5. doi: 10.1007/ s11912-014-0426-9.

4. Lauerová L, Kocák I. Regulace protinádorové imunity pomocných CD4+ Th1/ Th2 lymfocyty. Klin Onkol 2001; 14(5): 154– 156.

5. DeNardo DG, Bren­nan DJ, Rexhepaj E et al. Leukocyte complexity predicts breast cancer survival and functional­ly regulates response to chemotherapy. Cancer Discov 2011; 1(1): 54– 67. doi: 10.1158/ 2159-8274.CD-10-0028.

6. Disis ML, Knutson KL, Schif­fman K et al. Pre-existent im­munity to the HER-2/ neu oncogenic protein in patients with HER-2/ neu overexpres­s­ing breast and ovarian cancer. Breast Cancer Res Treat 2000; 62(3): 245– 252.

7. Le Du F, Eckhardt BL, Lim B et al. Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? Oncotarget 2015; 6(15): 12890– 12908.

8. Liu JC, Voisin V, Bader GD et al. Seventeen-gene signature from enriched Her2/ Neu mam­mary tumor-initiat­ing cel­ls predicts clinical outcome for human HER2+: ERα- breast cancer. Proc Natl Acad Sci U S A 2012; 109(15): 5832– 5837. doi: 10.1073/ pnas.1201105109.

9. Ibrahim EM, Al-Foheidi ME, Al-Mansour Mm et al. The prognostic value of tumor-infiltrat­ing lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat 2014; 148(3): 467– 476. doi: 10.1007/ s10549-014-3185-2.

10. Ghebeh H, Moham­med S, Al-Omair A et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expres­sed in breast cancer patients with infiltrat­ing ductal carcinoma: cor­relation with important high-risk prognostic factors. Neoplasia 2006; 8(3): 190– 198.

11. Mohit E, Hashemi A, Al­lahyari M. Breast cancer im­munotherapy: monoclonal antibodies and peptide-based vaccines. Expert Rev Clin Im­munol 2014; 10(7): 927– 961. doi: 10.1586/ 1744666X.2014.916211.

12. Žaloudík J. Perspektivy použití monoklonálních protilátek v protinádorové imunoterapii. In: Monoklonální protilátky v onkologii. Praha: Mediforum 2000, Maxdorf: 98– 108.

13. Emens LA, Middleton G. The interplay of im­munotherapy and chemotherapy: harnes­s­ing potential synergies. Cancer Im­munol Res 2015; 3(5): 436– 443. doi: 10.1158/ 2326-6066.CIR-15-0064.

14. Emens LA, Braiteh FS, Cas­sier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (abstract). In: Proceedings of the Thirty-Seventh An­nual CTRC-AACR San Antonio Breast Cancer Symposium: 2014 Dec 9– 13; San Antonio, TX. Philadelphia (PA): AACR. Cancer Res 2015; 75 (Suppl 9): abstr. nr PD1-6.

15. Melero I, Gaudernack G, Ger­ritsen W et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 2014; 11(9): 509– 524. doi: 10.1038/ nrclinonc.2014.111.

16. Kantoff PW, Schuetz TJ, Blumenstein BA et al. Over­all survival analysis of a phase II randomized control­led trial of a poxviral-based PSA-targeted im­munotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 2010; 28(7): 1099– 1105. doi: 10.1200/ JCO.2009.25.0597

17. Schneble EJ, Ber­ry JS, Trappey FA et al. The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax™) in breast cancer patients at risk for recur­rence: cor­relation of im­munologic data with clinical response. Im­munotherapy 2014; 6(5): 519– 531. doi: 10.2217/ imt.14.22.

18. ClinicalTrials.gov. Ef­ficacy and safety study of NeuVax™ (Nelipepimut-S or E75) vaccine to prevent breast cancer recur­rence (PRESENT). [online]. Avail­able from: https:/ / www.clinicaltrials.gov/ ct2/ results?term=NCT01479244.

19. Fracol M, Xu S, Mick R et al. Response to HER-2 pulsed DC1 vaccines is predicted by both HER-2 and estrogen receptor expres­sion in DCIS. Ann Surg Oncol 2013; 20(10): 3233– 3239. doi: 10.1245/ s10434-013-3119-y.

20. Park JW, Melisko ME, Es­serman LJ et al. Treatment with autologous antigen-present­ing cel­ls activated with the HER-2 based antigen Lapuleucel-T: results of a phase I study in im­munologic and clinical activity in HER-2 overexpres­s­ing breast cancer. J Clin Oncol 2007; 25(24): 3680– 3687.

21. Vas­silaros S, Tsibanis A, Tsikkinis A et al. Up to 15-year clinical fol­low-up of a pilot Phase III im­munotherapy study in stage II breast cancer patients us­ing oxidized man­nan-MUC1. Im­munotherapy 2013; 5(11): 1177– 1182. doi: 10.2217/ imt.13.126.

22. Apostolopoulos V, Pietersz GA, Tsibanis A et al. Pilot phase III im­munotherapy study in early-stage breast cancer patients us­ing oxidized man­nan-MUC1 [ISRCTN71711835]. Breast Cancer Res 2006; 8(3): R27.

23. Raina D, Uchida Y, Kharbanda A et al. Target­ing the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cel­ls. Oncogene 2014; 33(26): 3422– 3431. doi: 10.1038/ onc.2013.308.

24. Ibrahim NK, Mur­ray JL, Zhou D et al. Survival advantage in patients with metastatic breast cancer receiv­ing endocrine therapy plus Sialyl Tn-KLH vaccine: Post Hoc Analysis of a Large Randomized Trial. J Cancer 2013; 4(7): 577– 584. doi: 10.7150/ jca.7028.

25. Marshall J. Carcinoembrynic antigen-based vaccines. Semin Oncol 2003; 30 (3 Suppl 8): 30– 36.

26. Tur­riziani M, Fantini M, Benvenuto M et al. Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor ef­fects from experimental models to clinical trials. Recent Pat Anticancer Drug Discov 2012; 7(3): 265– 296.

27. Mohebtash M, Tsang KY, Madan RA et al. A pilot study of MUC-1/ CEA/ TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res 2011; 17(22): 7164– 7173.

28. Mittendorf EA, Clifton GT, Holmes JP et al. Final report of the phase I/ II clinical trial of the E75 (nelipepimut-S)vac­cine with booster inoculations to prevent disease recur­rence in high-risk breast cancer patients. Ann Oncol 2014; 25(9): 1735– 1742. doi: 10.1093/ an­nonc/ mdu211.

29. Tiriveedhi V, Tucker N, Herndon J et al. Safety and preliminary evidence of bio­logic ef­ficacy of a mam­maglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clin Cancer Res 2014; 20(23): 5964– 5975. doi: 10.1158/ 1078-0432.CCR-14-0059.

30. Morita S, Oka Y, Tsuboi A et al. A phase I/ II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy: safety as­ses­sment based on the phase I data. Jpn J Clin Oncol 2006; 36(4): 231– 236.

31. Suntharalingam G, Per­ry MR, Ward S et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006; 355(10): 1018– 1028.

32. Yu H, Yang J, Jiao S et al. Cytotoxic T lymphocyte antigen 4expres­sion in human breast cancer: implications for prognosis. Cancer Im­munol Im­munother 2015; 64(7): 853– 860.

33. Diab A, McArthur HL, Solomon SB et al. A pilot study of preoperative (Pre-op), single-dose ipilimumab (Ipi) and/ or cryoablation (Cryo) in women (pts) with early-stage/ resectable breast cancer (ESBC). J Clin Oncol 2014; 32 (Suppl): 5S (abstr. 1098).

34. Vonderheide RH, LoRus­so PM, Khalil M et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-as­sociated modulation of inducible costimulator expres­sion on patient T cel­ls. Clin Cancer Res 2010; 16(13): 3485– 3494. doi: 10.1158/ 1078-0432.CCR-10-0505.

35. Moreno BH, Ribas A. Anti-program­med cell death protein-1/ ligand-1 therapy in dif­ferent cancers. Br J Cancer 2015; 112(9): 1421– 1427. doi: 10.1038/ bjc.2015.124.

36. Matsumoto H, Koo SL, Dent R et al. Role of inflam­matory infiltrates in triple negative breast cancer. J Clin Pathol 2015; 68(7): 506– 510. doi: 10.1136/ jclinpath-2015-202944.

37. ClinicalTrials.gov. Safety study of nivolumab with nab-paclitaxel plus or minus gemcitabine in pancreatic cancer, nab-paclitaxel/ carboplatin in stage IIIB/ IV non-small cell lung cancer or nab-paclitaxel in recur­rent metastatic breast cancer. [online]. Available from: https:/ / www.clinicaltrials.gov/ ct2/ results?term=NCT02309177.

38. ClinicalTrials.gov. Entinostat, nivolumab, and ipilimumab in treat­ing patients with solid tumors that are metastatic or can­not be removed by surgery or local­ly advanced or metastatic HER2-negative breast cancer. [online]. Available from: https:/ / www.clinicaltrials.gov/ ct2/ results?term=NCT02453620.

39. ClinicalTrials.gov. Nivolumab after induction treatment in triple-negative breast cancer (TNBC) patients (TONIC). [online]. Available from: https:/ / www.clinicaltrials.gov/ ct2/ results?term=NCT02499367.

40. Nanda R, Chow LQ, Dees EC et al. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer (abstract). In: Proceedings of the Thirty-Seventh An­nual CTRC-AACR San Antonio Breast Cancer Symposium: 2014 Dec 9– 13; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2015; 75 (Suppl 9): abstr. S1-09.

41. ClinicalTrials.gov. Neoadjuvant trial of nab-paclitaxel and MPDL3280A. [online]. Available from: https:/ / www.clinicaltrials.gov/ ct2/ results?term=NCT02499367NCT02530489.

42. Brignone C, Gutier­rez M, Mefti F et al. First-line chemoim­munotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances im­mune responses and antitumor activity. J Transl Med 2010; 8: 71. doi: 10.1186/ 1479-5876-8-71.

43. Emens LA, Asquith JM, Leatherman JM et al. Timed sequential treatment with cyclophosphamide, doxorubicin, and an al­logeneic granulocyte-macrophage colony-stimulat­ing factor-secret­ing breast tumor vac­cine: a chemotherapy dose-rang­ing factorial study of safety and im­mune activation. J Clin Oncol 2009; 27(35): 5911– 5918. doi: 10.1200/ JCO.2009.23.3494.

44. Natsume A, Niwa R, Satoh M. Improv­ing ef­fector functions of antibodies for cancer treatment: enhanc­ing ADCC and CDC. Drug Des Devel Ther 2009; 3: 7– 16.

45. Grell P, Svoboda M, Simícková M et al. Trastuzumab in the breast cancer treatment: ef­ficacy and resistance mechanisms. Klin Onkol 2009; 22(2): 45– 51.

46. Verma S, Miles D, Gian­ni L et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367(19): 1783– 1791. doi: 10.1056/ NEJMoa1209124.

47. Tsang R, Finn R. Beyond trastuzumab: novel therapeutic strategies in HER2-positive metastatic breast cancer. Br J Cancer 2012; 106(1): 6– 13. doi: 10.1038/ bjc.2011.516.

48. Capelan M, Pugliano L, De Azambuja E et al. Pertuzumab: new hope for patients with HER2-positive breast cancer. Ann Oncol 2013; 24(2): 273– 282. doi: 10.1093/ an­nonc/ mds328.

49. Scheuer W, Friess T, Burtscher H et al. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 2009; 69(24): 9330– 9336. doi: 10.1158/ 0008-5472.CAN-08-4597.

50. Diermeier-Daucher S, Ortmann O, Buchholz S et al. Trifunctional antibody ertumaxomab: non-im­munological ef­fects on Her2 receptor activity and downstream signaling. MAbs 2012; 4(5): 614– 622. doi: 10.4161/ mabs.21003.

51. Haense N, Pauligk C, Marme F et al. Interim analysis of a phase I/ II open label, dose-escalat­ing study to investigate safety, tolerability, and preliminary ef­ficacy of the trifunctional anti-HER2/ neu x anti-CD3 antibody ertumaxomab in patients with HER2/ neu expres­s­ing solid tumors progres­s­ing after standard therapy. J Clin Oncol 2014; 32 (Suppl): 5S (abstr. 3055).

52. Soukup K, Wang X. Radiation meets im­munotherapy –  a perfect match in the era of combination therapy? Int J Radiat Biol 2015; 91(4): 299– 305. doi: 10.3109/ 09553002.2014.995383.

53. Navrátil J, Fabian P, Palácová M et al. Triple negativní karcinom prsu. Klin Onkol 2015; 28(6): 405– 415. doi: 10.14735/ amko2015405.

54. Dieci MV, Mathieu MC, Guarneri V et al. Prognostic and predictive value of tumor-infiltrat­ing lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol 2015; 26(8): 1698– 1704. doi: 10.1093/ an­nonc/ mdv239.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#