#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Diagnostic and prognostic biomarkers in acute coronary syndrome


Authors: Petr Kubena 1,2;  Jindřich Špinar 1;  Milan Dastych 3,4;  Petr Lokaj 1;  Jiří Pařenica 1
Authors‘ workplace: Interní kardiologická klinika LF MU a FN Brno, pracoviště Bohunice 1;  Oddělení pneumologie, alergologie, Hochgebirgsklinik Davos, Švýcarsko 2;  Oddělení klinické biochemie FN Brno, pracoviště Bohunice 3;  Katedra laboratorních metod LF MU, Brno 4
Published in: Vnitř Lék 2017; 63(12): 935-944
Category: Reviews

Overview

Acute myocardial infarction (AMI) is an important cause of mortality and morbidity worldwide. Early diagnostics of this disease helps in the appropriate treatment of patients. Great attention is paid to the diagnostic and risk stratification of patients according to circulating biomarkers. There are a lot of scientific publications describing this topic. The aim of this article is to provide a comprehensive overview of the most important and most examined biomarkers in acute coronary syndrome. Meanwhile troponin takes a fundamental place for AMI diagnostic (mostly the high-sensitive methods) in preference to MB-fraction of creatine kinase and myoglobin. The connection to a higher sudden death risk, reinfarcts and heart failure occurring was also proved by many other biomarkers. The most important of them are the natriuretic peptides, the C-reactive protein, the heart fatty acid binding protein, the pregnancy-associated plasma protein-A, CD146, cystatin C, NGAL, copeptin, MR-proadrenomedullin, and the growth differentiation factor-15. More prospective randomized studies are needed for the further use of these other biomarkers in clinical practice.

Key words:
acute coronary syndrome – biomarkers


Sources

1. Steg G, James SK, Atar D et al. STEMI – ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segmant elevation. Eur Heart J 2012; 33(20): 2569–2619. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehs215>.

2. Roffi M, Patrono C, Collet JP et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2016; 37(3): 267–315. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehv320>.

3. Tousek P, Tousek F, Horak D et al. The incidence and outcomes of acute coronary syndrome in a central European country: results of the CZECH-2 registry. Int J Cardiol 2014; 173(2): 204–208. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcard.2014.02.013>.

4. Thygesen K, Alpert JS, Jaffe AS et al. Third Universal Definition of Myocardial Infarction. Circulation 2012; 126(16): 2020–2035. Dostupné z DOI: <http://dx.doi.org/10.1161/CIR.0b013e31826e1058>.

5. Widimský P, Rokyta R, Hlinomaz O et al. Summary of the 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Prepared by the Czech Society of Cardiology. Cor et Vasa 2016; 58(1): e4-e28. Dostupné z WWW: <http://www.sciencedirect.com/science/article/pii/S0010865016000059>.

6. Wu AH, Lu QA, Todd J et al. Short- and long-term biological variation in cardiac tropoin I measured with a high-sensitivity assay: implications for clinical practice. Clin Chem 2009; 55(1): 52–58. Dostupné z DOI: <http://dx.doi.org/10.1373/clinchem.2008.107391>.

7. Vasile VC, Saenger AK, Kroning JM et al. Biological and analytical variability of novel high-sensitivity cardiac troponin T assay. Clin Chem 2010; 56(7): 1086–1090. Dostupné z DOI: <http://dx.doi.org/10.1373/clinchem.2009.140616>.

8. Giannitsis E, Kurz K, Hallermayer K et al. Analytical Validation of a High-Sensitivity Cardiac Troponin T Assay. Clin Chem 2010; 56(2): 254–261. Dostupné z DOI: <http://dx.doi.org/10.1373/clinchem.2009.132654>.

9. Pickering JW, Greenslade JH, Cullen L et al. Validation of presentation and 3 h high-sensitivity troponin to rule-in and rule-out acute myocardial infarction. Heart 2016; 102(16): 1270–1278. Dostupné z DOI: <http://dx.doi.org/10.1136/heartjnl-2015–308505>.

10. Mueller C, Giannitsis E, Christ M et al. Multicenter Evaluation of a 0-Hour/1-Hour Algorithm in the Diagnosis of Myocardial Infarction With High-Sensitivity Cardiac Troponin T. Ann Emerg Med 2016; 68(1): 76–87.e4. Dostupné z DOI: <http://dx.doi.org/10.1016/j.annemergmed.2015.11.013>.

11. Reichlin T, Twerenbold R, Wildi K et al. Prospective validation of a 1-hour algorithm to rule-out and rule-in acute myocardial infarction using a high-sensitivity cardiac troponin T assay. CMAJ 2015; 187(8): E243-E252. Dostupné z DOI: <http://dx.doi.org/10.1503/cmaj.141349>.

12. Reichlin T, Irfan A, Twerenbold R et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation 2011; 124(2): 136–145. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.111.023937>.

13. Thygesen K, Mair J, Giannitsis E et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J 2012; 33(18): 2252–2257.

14. Morrow DA, Cannon CP, Jesse RL et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circulation 2007; 115(13): e356-e375. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.107.182882>.

15. Hallén J, Buser P, Schwitter J et al. Relation of Cardiac Troponin I Measurements at 24 and 48 Hours to Magnetic Resonance-Determined Infarct Size in Patients With ST-Elevation Myocardial Infarction. Am J Cardiol 2009; 104(11): 1472–1477. Dostupné z DOI: <http://dx.doi.org/10.1016/j.amjcard.2009.07.019>.

16. Danese E, Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann Transl Med 2016; 4(10): 194. Dostupné z DOI: <http://dx.doi.org/10.21037/atm.2016.05.19>.

17. Collinson PO, Stubbs PJ, Kessler AC et al. Multicentre evaluation of the diagnostic value of cardiac troponin T, CK-MB mass, and myoglobin for assessing patients with suspected acute coronary syndromes in routine clinical practice. Heart 2003; 89(3): 280–286.

18. Eggers KM, Oldgren J, Nordenskjöld A et al. Diagnostic value of serial measurement of cardiac markers in patients with chest pain: limited value of adding myoglobin to troponin I for exclusion of myocardial infarction. Am Heart J 2004; 148(4): 574–581.

19. Anflous K, Veksler V, Mateo P et al. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action. Biochem J 1997; 322(Pt 1): 73–78.

20. Santos ES, Baltar VT, Pereira MP et al. Comparison between cardiac troponin I and CK-MB mass in acute coronary syndrome without ST elevation. Arg Bras Cardiol 2011; 96(3): 179–187.

21. Roffi M, Patrono C, Collet JP et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2016; 37(3): 267–315. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehv320>.

22. Savonitto S, Granger CB, Ardissino D et al. The prognostic value of creatine kinase elevations extends across the whole spectrum of acute coronary syndromes. J Am Coll Cardiol 2002; 39(1): 22–29.

23. Cavallini C, Savonitto S, Violini R et al. Impact of the elevation of biochemical markers of myocardial damage on long-term mortality after percutaneous coronary intervention: results of the CK-MB and PCI study. Eur Heart J 2005; 26(15): 1494–1498.

24. Ponikowski P, Voors AA, Anker SD et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016; 37(27): 2129–2200. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehw128>. Erratum in Erratum [Eur Heart J 2016].

25. Riezebos RK, Laarman GJ, Tijssen JG et al. The value of N-terminal proB-type natriuretic peptide for early identification of myocardial infarction in patients with high-risk non-ST-elevation acute coronary syndromes. Clin Chem Lab Med 2011; 49(8): 1359–1365. Dostupné z DOI: <http://dx.doi.org/10.1515/CCLM.2011.213>.

26. Mayr A, Mair J, Schocke M et al. Predictive value of NT-pro BNP after acute myocardial infarction: relation with acute and chronic infarct size and myocardial function. Int J Cardiol 2011; 147(1): 118–123. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcard.2009.09.537>.

27. Morrow DA, de Lemos JA, Sabatine MS et al. Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol 2003; 41(8): 1264–1272. Erratum in J Am Coll Cardiol 2003; 41(10): 1852.

28. Ganovska E, Arrigo M, Helanova K et al. Natriuretic peptides in addition to Zwolle score to enhance safe and early discharge after acute myocardial infarction: A prospective observational cohort study. Int J Cardiol 2016; 215: 527–531. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcard.2016.04.148>.

29. Kubková L, Špinar K, Pávková Goldbergová M et al. Zánětlivá reakce a význam C-reaktivního proteinu u pacientů s akutním koronárním syndromem. Vnitř Lék 2013; 59(11): 981–988.

30. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111(12): 1805–1812.

31. Schneider HG, LAm QT Procalcitonin for the clinical laboratory: a review. Pathology 2007; 39(4): 383–390.

32. Parenica J, Jarkovsky J, Malaska J e al. Infectious Complications and Immune/Inflammatory Response in Cardiogenic Shock Patients: A Prospective Observational Study. Shock 2017; 47(2): 165–174. Dostupné z DOI: <http://dx.doi.org/10.1097/SHK.0000000000000756>.

33. Schiele F, Meneveau N, Seronde MF et al. C-reactive protein improves risk prediction in patients with acute coronary syndromes. Eur Heart J 2010; 31(3): 290–297. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehp273>.

34. Morrow DA, Rifai N, Antman EM et al. C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. Thrombolysis in Myocardial Infarction. J Am Coll Cardiol 1998; 31(4): 1460–1465.

35. O´Donoghue ML, Glaser R, Cavender MA et al. Effect of Losmapimod on Cardiovascular Outcomes in Patients Hospitalized With Acute Myocardial Infarction: A Randomized Clinical Trial. JAMA 2016; 315(15): 1591–1599. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2016.3609>.

36. Bhakti NG, Dharmik SP, Haridas N et al. Utility of Heart-type Fatty Acid Binding Protein as a New Biochemical Marker for the Early Diagnosis of Acute Coronary Syndrome. J Clin Diagn Res 2015; 9(1): BC22-BC24. Dostupné z DOI: <http://dx.doi.org/10.7860/JCDR/2015/11006.5451>.

37. Matsumoto S, Nakatani D, Sakata Y et al. Elevated serum heart-type fatty acid-binding protein in the convalescent stage predicts long-term outcome in patients surviving acute myocardial infarction. Circ J 2013; 77(4): 1026–1032.

38. Gururajan P, Gurumurthy P, Nayar P et al. Pregnancy associated plasma protein-A (PAPP-A) as an early marker for the diagnosis of acute coronary syndrome. Indian Heart J 2012; 64(2): 141–145. Dostupné z DOI: <http://dx.doi.org/10.1016/S0019–4832(12)60049–2>.

39. von Haehling S, Doehner W, Jankowska E et al. Value of serum pregnancy-associated plasma protein A for predicting cardiovascular events among patients presenting with cardiac chest pain. CMAJ 2013; 185(7): E295-E303. Dostupné z DOI: <http://dx.doi.org/10.1503/cmaj.110647>.

40. Anfosso F, Bardin N, Francès V et al. Activation of human endothelial cells via S-endo-1 antigen (CD146) stimulates the tyrosine phosphorylation of focal adhesion kinase p125(FAK). J Biol Chem 1998; 273(41): 26852–26856.

41. Stalin J, Harhouri K, Hubert L et al. Soluble Melanoma Cell Adhesion Molecule (sMCAM/sCD146) Promotes Angiogenic Effects on Endothelial Progenitor Cells through Angiomotin. J Biol Chem 2013; 288(13): 8991–9000. Dostupné z DOI: <http://dx.doi.org/10.1074/jbc.M112.446518>.

42. Bardin N, Reumaux D, Geboes K et al. Increased expression of CD146, a new marker of the endothelial junction in active inflammatory bowel disease. Inflamm Bowel Dis 2006; 12(1): 16–21.

43. Gayat E, Caillard A, Laribi S et al. Soluble CD146, a new endothelial biomarker of acutely decompensated heart failure. Int J Cardiol 2015; 199: 241–247. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcard.2015.07.039>.

44. Kubena P, Arrigo M, Parenica J et al. Plasma Levels of Soluble CD146 Reflect the Severity of Pulmonary Congestion Better Than Brain Natriuretic Peptide in Acute Coronary Syndrome. Ann Lab Med 2016; 36(4): 300–305. Dostupné z DOI: <http://dx.doi.org/10.3343/alm.2016.36.4.300>.

45. Xie L, Terrand J, Xu B et al. Cystatin C increases in cardiac injury: a role in extracellular matrix protein modulation. Cardiovasc Res 2010; 87(4): 628–635. Dostupné z DOI: <http://dx.doi.org/10.1093/cvr/cvq138>.

46. Liu J, Sukhova GK, Sun JS et al. Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24(8): 1359–1366.

47. Jernberg T, Lindahl B, James S et al. Cystatin C: a novel predictor of outcome in suspected or confirmed non-ST-elevation acute coronary syndrome. Circulation 2004; 110(16): 2342–2348.

48. Brankovic M, Akkerhuis KM, Buljubasic N et al. Plasma cystatin C and neutrophil gelatinase-associated lipocalin in relation to coronary atherosclerosis on intravascular ultrasound and cardiovascular outcome: Impact of kidney function (ATHEROREMO-IVUS study). Atherosclerosis 2016; 254: 20–27. Dostupné z DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2016.09.016>.

49. Yan L, Borregaard N, Kjeldsen L et al. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 2001; 276(40): 37258–37265.

50. Helanova K, Parenica J, Dlouhy V et al. Význam biomarkerů NGAL a cystatinu C u kardiovaskulárních onemocnění. Vnitř Lék 2012; 58(4): 286–290.

51. Lindberg S, Pedersen SH, Mogelvang R et al. Prognostic utility of neutrophil gelatinase-associated lipocalin in predicting mortality and cardiovascular events in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J Am Coll Cardiol 2012; 60(4): 339–345. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jacc.2012.04.017>.

52. Schurtz G, Lamblin N, Bauters C et al. Copeptin in acute coronary syndromes and heart failure management: State of the art and future directions. Arch Cardiovasc Dis 2015; 108(6–7): 398–407. Dostupné z DOI: <http://dx.doi.org/10.1016/j.acvd.2015.04.002>.

53. Voors AA, von Haehling S, Anker SD et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur Heart J 2009; 30(10): 1187–1194. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehp098>.

54. Wild PS, Schnabel RB, Lubos E et al. Midregional proadrenomedullin for prediction of cardiovascular events in coronary artery disease: results from the AtheroGene study. Clin Chem 2012; 58(1): 226–236. Dostupné z DOI: <http://dx.doi.org/10.1373/clinchem.2010.157842>.

55. Khan SQ, O´Brien RJ, Struck J et al. Prognostic value of midregional pro-adrenomedullin in patients with acute myocardial infarction: the LAMP (Leicester Acute Myocardial Infarction Peptide) study. J Am Coll Cardiol 2007; 49(14): 1525–1532.

56. Tzikas S, Keller T, Ojeda FM et al. MR-proANP and MR-proADM for risk stratification of patients with acute chest pain. Heart 2013; 99(6): 388–395. Dostupné z DOI: <http://dx.doi.org/10.1136/heartjnl-2012–302956>.

57. Ago T, Sadoshima J. GDF15, a cardioprotective TGF-beta superfamily protein. Circ Res 2006; 98(3): 294–297.

58. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000; 342(18): 1350–1358.

59. Salvagno GC, Pavan C. Prognostic biomarkers in acute coronary syndrome. Ann Transl Med 2016; 4(13): 258. Dostupné z DOI: <http://dx.doi.org/10.21037/atm.2016.06.36>.

60. Hangström E, James SK, Bertilsson M et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: results from the PLATO study. Eur Heart J 2016; 37(16): 1325–1333. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehv491>.

61. Wollert KC, Kempf T, Peter T et al. Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation 2007; 115(8): 962–971.

Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#