#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Controversy in the Postoperative Treatment of Low-grade Gliomas


Authors: T. Kazda 1,2;  R. Lakomý 3;  A. Poprach 3;  P. Pospíšil 1;  R. Jančálek 4;  P. Šlampa 1
Authors‘ workplace: Klinika radiační onkologie LF MU a Masarykův onkologický ústav, Brno 1;  CEITEC – Středoevropský technologický institut, MU, Brno 2;  Klinika komplexní onkologické péče LF MU a Masarykův onkologický ústav, Brno 3;  Neurochirurgická klinika LF MU a FN U sv. Anny v Brně 4
Published in: Klin Onkol 2017; 30(5): 337-342
Category: Review
doi: https://doi.org/10.14735/amko2017337

Overview

Background:
The optimal treatment for low-grade gliomas remains controversial. Neurosurgery, radiotherapy, and chemotherapy are the main treatment options. Despite advances in oncology, there are still a lot of uncertainties, and the optimal sequences, combinations, and timings of these procedures have not yet been optimized. It is still unclear whether temozolomide can replace effective, but toxic PCV chemotherapy (procarbazine, lomustine, vincristine) and whether temozolomide can be used upfront alone instead of radiotherapy alone. Mature results from phase III trials (CODEL, EORTC 22033-26033) will provide answers to these questions. Correlative analyses of survival data and molecular marker findings (1p/19q codeletion, IDH1/2 mutation, and MGMT promoter methylation status) are essential. Due to slow progressive nature of the disease, all clinical trials with low-grade gliomas are complicated by the need for long-term follow-up to obtain valid mature data, which makes any new treatment procedures or developments in basic research developed during the course of closed clinical trials difficult to apply in daily clinical practice. An example is the recently published RTOG 9802 study evaluating the role of adjuvant PCV in combination with radiotherapy for the treatment of high-risk low-grade glioma patients where the recruitment of patients was initiated almost two decades ago. Health-related quality of life after treatment of patients with expected long-term survival is also very important and its maintenance is currently the focus of considerable interest.

Aim:
The main objective of the present review is to summarize the results of key clinical trials and highlight controversial issues that could have an impact on future daily practice. Another aim is to discuss these issues in the light of newly established molecular markers from the new 2016 WHO Classification of Tumors of the Central Nervous System.

Key words:
glioma – astrocytoma – radiotherapy – temozolomide – PCV – cognition

This work was supported by MH CZ – RVO (MMCI, 00209805) and by project of the Ministry of Education, Youths and Sports of the Czech Republic CEITEC 2020 (LQ1601).

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted:
21. 2. 2017

Accepted:
20. 3. 2017


Sources

1. Tandon A, Schiff D. Therapeutic decision making in patients with newly diagnosed low grade glioma. Curr Treat Options Oncol 2014; 15 (4): 529–538. doi: 10.1007/s11864-014-0304-6.

2. Laack NN, Sarkaria JN, Buckner JC. Radiation Therapy Oncology Group 9802: Controversy or Consensus in the Treatment of Newly Diagnosed Low-Grade Glioma? Semin Radiat Oncol 2015; 25 (3): 197–202. doi: 10.1016/j.semradonc.2015.02.004.

3. Polívka J Jr, Polívka J, Rohan V et al. Aktuální pohled na management nízkostupňových gliových nádorů centrálního nervového systému. Cesk Slov Neurol N 2016; 79/112 (5): 534–540. doi: 10.14735/amcsnn2016534.

4. Brat DJ, Verhaak RG, Aldape KD et al. Comprehensive, Integrative Genomic Analysis of Diff use Lower-Grade Gliomas. N Engl J Med 2015; 372 (26): 2481–2498.

5. Louis DN, Perry A, Reifenberger G et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131 (6): 803–820. doi: 10.1007/s00401-016-1545-1.

6. Ius T, Isola M, Budai R et al. Low-grade glioma surgery in eloquent areas: volumetric analysis of extent of resection and its impact on overall survival. A single-institution experience in 190 patients: clinical article. J Neurosurg 2012; 117 (6): 1039–1052. doi: 10.3171/2012.8.JNS12393.

7. Duffau H, Taillandier L. New concepts in the management of diffuse low-grade glioma: proposal of a multistage and individualized therapeutic approach. Neuro Oncol 2015; 17 (3): 332–342. doi: 10.1093/neuonc/nou153.

8. Smith JS, Chang EF, Lamborn KR et al. Role of extentof resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 2008; 26 (8): 1338–1345. doi: 10.1200/JCO.2007.13.9337.

9. Jakola AS, Unsgard G, Myrmel KS et al. Surgical strategy in grade II astrocytoma: a population-based analysis of survival and morbidity with a strategy of early resection as compared to watchful waiting. Acta Neurochir 2013; 155 (12): 2227–2235. doi: 10.1007/s00701-013-1869-8.

10. Aghi MK, Nahed BV, Sloan AE et al. The role of surgery in the management of patients with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2015; 125 (3): 503–530. doi: 10.1007/s11060-015-1867-1.

11. Douw L, Klein M, Fagel SS et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol 2009; 8 (9): 810–818. doi: 10.1016/S1474-4422 (09) 70204-2.

12. Jo J, Williams B, Smolkin M et al. Effect of neoadjuvant temozolomide upon volume reduction and resection of diffuse low-grade glioma. J Neurooncol 2014; 120 (1): 155–161. doi: 10.1007/s11060-014-1538-7.

13. Ryken TC, Parney I, Buatti J et al. The role of radiotherapy in the management of patients with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2015; 125 (3): 551–583. doi: 10.1007/s11060-015-1948-1.

14. van den Bent MJ, Afra D, de Witte O et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 2005; 366 (9525): 985–990.

15. Klein M, Heimans JJ, Aaronson NK et al. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet 2002; 360 (9343): 1361–1368.

16. Scoccianti S, Detti B, Cipressi S et al. Changes in in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. J Neurooncol 2012; 108 (2): 291–308. doi: 10.1007/s11060-012-0821-8.

17. Kazda T, Jancalek R, Pospisil P et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol 2014; 9: 139. doi: 10.1186/1748-717X-9-139.

18. Kazda T, Pospisil P, Vrzal M et al. Volumetric modulated arc therapy for hippocampal-sparing radiotherapy in transformed low-grade glioma: A treatment planning case report. Cancer Radiother 2015; 19 (3): 187–191. doi: 10.1016/j.canrad.2014.11.013.

19. Laack NN, Brown PD, Ivnik RJ et al. Cognitive function after radiotherapy for supratentorial low-grade glioma: a North Central CancerTreatment Group prospective study. Int J Radiat Oncol Biol Phys 2005; 63 (4): 1175–1183.

20. Karim AB, Maat B, Hatlevoll R et al. A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int J Radiat Oncol Biol Phys 1996; 36 (3): 549–556.

21. Kiebert GM, Curran D, Aaronson NK et al. Quality of life after radiation therapy of cerebral low-grade gliomas of the adult: results of a randomised phase III trial on dose response (EORTC trial 22844). EORTC Radiotherapy Co-operative Group. Eur J Cancer 1998; 34 (12): 1902–1909.

22. Baumert BG, Hegi ME, van den Bent MJ et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol 2016; 17 (11): 1521–1532. doi: 10.1016/S1470-2045 (16) 30313-8.

23. Buckner JC, Shaw EG, Pugh SL et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 2016; 374 (14): 1344–1355. doi: 10.1056/NEJMoa1500925.

24. Lakomy R, Kazda T, Poprach A et al. Postavení chemoterapie v pooperační léčbě low-grade gliomů. Klin Onkol 2017; 30 (5): 343–348. doi: 10.14735/amko2017343.

25. Třebický F, Kubeš J, Bartoš R et al. Treatment for volume upgrading of the low-grade supratentorial glioma after the subtotal neurosurgical resection. Klin Onkol 2012; 25 (4): 294–298.

26. Gozé C, Blonski M, Le Maistre G et al. Imaging growth and isocitrate dehydrogenase 1 mutation are independent predictors for diffuse low-grade gliomas. Neuro Oncol 2014; 16 (8): 1100–1109. doi: 10.1093/neuonc/ nou085.

27. Wick W, Hartmann C, Engel C et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009; 27 (35): 5874–5880. doi: 10.1200/JCO.2009.23.6497.

28. Wick W, Roth P, Hartmann C et al. Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro Oncol 2016; 18 (11): 1529–1537.

29. van den Bent MJ. Chemotherapy for low-grade glioma: when, for whom, which regimen? Curr Opin Neurol 2015; 28 (6): 633–638. doi: 10.1097/WCO.0000000000000257.

30. Cairncross G, Wang M, Shaw E et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013; 31 (3): 337–343. doi: 10.1200/JCO.2012.43.2674.

31. van den Bent MJ, Brandes AA, Taphoorn MJ et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC Brain Tumor Group study 26951. J Clin Oncol 2013; 31 (3): 344–350. doi: 10.1200/JCO.2012.43.2229.

32. Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10): 987–996.

33. Fisher BJ, Hu C, Macdonald DR et al. Phase 2 study of temozolomide-based chemoradiation therapy for high-risk low-grade gliomas: preliminary results of radiation therapy oncology group 0424. Int J Radiat Oncol Biol Phys 2015; 91 (3): 497–504. doi: 10.1016/j.ijrobp.2014.11.012.

34. Eckel-Passow JE, Lachance DH, Molinaro AM et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med 2015; 372 (26): 2499–2508. doi: 10.1056/NEJMoa1407279.

35. Fabian M, Jezberová M, Pružincová L et al. Vplyv rýchlosti rastu supratentoriálnych grade II gliómov na ich prognózu. Cesk Slov Neurol N 2015; 78/111 (3): 274–281.

36. Mandonnet E, Wager M, Almairac F et al. Survey on current practice within the European Low-Grade Glioma Network: where do we stand and what is the next step? Neuro Oncol Practice. In press 2017. doi: 10.1093/nop/npw031.

37. Cairncross JG, Wang M, Jenkins RB et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 2014; 32 (8): 783–790. doi: 10.1200/JCO.2013.49.3726.

38. van den Bent MJ, Erdem-Eraslan L, Idbaih A et al. MGMT-STP27 methylation status as predictive marker for response to PCV in anaplastic oligodendrogliomas and oligoastrocytomas. A report from EORTC study 26951. Clin Cancer Res 2013; 19 (19): 5513–5522. doi: 10.1158/1078-0432.CCR-13-1157.

39. Jenkins RB, Blair H, Ballman KV et al. A t (1; 19) (q10; p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 2006; 66 (20): 9852–9861.

40. Polivka J Jr, Polivka J, Repik T et al. Co-deletion of 1p/19q as Prognostic and Predictive Biomarker for Patients in West Bohemia with Anaplastic Oligodendroglioma. Anticancer Res 2016; 36 (1): 471–476.

41. Suzuki H, Aoki K, Chiba K et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 2015; 47 (5): 458–468. doi: 10.1038/ng.3273.

42. Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360 (8): 765–773. doi: 10.1056/NEJMoa0808710.

43. Wick W, Meisner C, Hentschel B et al. Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology 2013; 81 (17): 1515–1522. doi: 10.1212/WNL.0b013e3182a95 680.

44. Lhotská H, Zemanová Z, Kramář F et al. Molecular cytogenetic analysis of chromosomal aberrations in cells of low grade gliomas and its contribution for tumour classification. Klin Onkol 2014; 27 (3): 183–191. doi: 10.14735/amko2014183.

45. Reifenberger G, Wirsching HG, Knobbe-Thomsen CB et al. Advances in the molecular genetics of gliomas – implications for classification and therapy. Nat Rev Clin Oncol 2016; 14 (7): 434–452. doi: 10.1038/nrclinonc.2016.204.

46. Avila EK, Chamberlain M, Schiff D et al. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials. Neuro Oncol 2017; 19 (1): 12–21. doi: 10.1093/neuonc/now190.

47. van den Bent MJ, Wefel JS, Schiff D et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 2011; 12 (6): 583–593. doi: 10.1016/S1470-2045 (11) 70057-2.

48. Ellingson BM, Bendszus M, Boxerman J et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 2015; 17 (9): 1188–1198. doi: 10.1093/neuonc/nov095.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#