#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The importance of new parameters of contractility and stroke work in evaluation of heart function and prognosis


Authors: M. Tesák 1,2;  J. Pařenica 1
Authors‘ workplace: Interní kardiologická klinika LF MU a FN Brno 1;  Interní oddělení, Nemocnice Třebíč 2
Published in: Kardiol Rev Int Med 2017, 19(4): 261-265

Overview

Heart function evaluation is a key element in predicting heart disease prognosis. However, in vivo cardiac function assessment is influenced by many factors, and therefore there is no universal parameter defining the status of a "mechanically healthy heart". In this review, new and existing parameters of heart function are divided according to whether they express contractility or mechanical energy of cardiac function. Their role in the evaluation of cardiac physiology, methods of assessment, possible clinical use and disadvantages are discussed.

Key words:
ventricular function – heart failure – ejection fraction – systolic elastance – stroke work – cardiac power – preload recruitable stroke work


Sources

1. Sonnenblick EH. Correlation of myocardial ultrastructure and function. Circulation 1968; 38(1): 29– 44.

2. Kennedy JW, Baxley WA, Figley MM et al. Quantitative Angiocardiography. Circulation 1966; 34(2): 272. doi: 10.1161/ 01.CIR.34.2.272.

3. Ponikowski P, Voors AA, Anker SD et al. 2016 ESC Guidelines for the dia­gnosis and treatment of acute and chronic heart failure: The Task Force for the dia­gnosis and treatment of acute and chronic heart fail­ure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37(27): 2129– 2200. doi: 10.1093/ eurheartj/ ehw128.

4. Brignole M, Auricchio A, Baron-Esquivias G et al. 2013 ESC Guidelines on cardiac pac­ing and cardiac resynchronization ther­apy: The Task Force on cardiac pac­ing and resynchronization ther­apy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J 2013; 34(29): 2281– 2329. doi: 10.1093/ eurheartj/ eht150.

5. Vahanian A, Alfieri O, Andreotti F et al. Guidelines on the management of valvular heart dis­ease (version 2012). The Joint Task Force on the Management of Valvular Heart Dis­ease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2012; 33(19): 2451– 2496. doi: 10.1093/ eurheartj/ ehs109.

6. Clavel MA, Côté N, Mathieu P et al. Paradoxical low-flow, low-gradient aortic stenosis despite preserved left ventricular ejection fraction: new insights from weights of operatively excised aortic valves. Eur Heart J 2014; 35(38): 2655– 2662. 10.1093/ eurheartj/ ehu152.

7. Ejection Fraction Revisited: Anesthesiology. Available at: http:/ / journals.lww.com/ anesthesiology/ Fulltext/ 1991/ 01000/ Ejection_Fraction_Revisited_.26.aspx.

8. Krayenbuhl HP, Bussmann WD, Turina M et al. Is the ejection fraction an index of myocardial contractility? Cardiologia 1968; 53(1):1– 10.

9. Davidson BP, Giraud GD. Left ventricular function and the systemic arterial vasculature: remember­ing what we have learned. J Am Soc Echocardiogr 2012; 25(8): 891– 894. doi: 10.1016/ j.echo.2012.06.020.

10. Shingu Y, Matsui Y. Did we misunderstand how to calculate total stroke work in mitral regurgitation by echocardiography? Circ J 2012; 76(6): 1533– 1534. doi: 10.1253/ circj.CJ-12-0319.

11. Lainchbury JG, Richards AM. Exercise test­ing in the assessment of chronic congestive heart failure. Heart 2002; 88(5): 538– 543. doi: 10.1136/ heart.88.5.538

12. Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation 1981; 63(6): 1223– 1227. doi: 10.1161/ 01.CIR.63.6.1223

13. Chen CH, Fetics B, Nevo E et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 2001; 38(7): 2028– 2034. doi: 10.1016/ S0735-1097(01)01651-5.

14. Feneley MP, Skelton TN, Kisslo KB et al. Comparison of preload recruitable stroke work, end-systolic pressure-volume and dPdtmax-end-diastolic volume relations as indexes of left ventricular contractile performance in patients undergo­ing routine cardiac catheterization. J Am Coll Cardiol 1992; 19(7): 1522– 1530. doi: 10.1016/ 0735-1097(92)90613-R.

15. Frank FO. Zur Dynamik des Herzniuskels. Z Biol 1895; 32: 370– 447.

16. Patterson SW, Starl­ing EH. On the mechanical factors which determine the output of the ventricles. J Physiol 1914; 48(5): 357– 379.

17. Sarnoff SJ, Berglund E. Ventricular function. Circulation 1954; 9(5): 706– 718. doi: 10.1161/ 01.CIR.9.5.706.

18. Glower DD, Spratt JA, Snow ND et al. Linearity of the Frank-Starl­ing relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 1985; 71(5): 994. doi: 10.1161/ 01.CIR.71.5.994.

19. Lee WS, Huang WP, Yu WC et al. Estimation of preload recruitable stroke work relationship by a single-beat technique in humans. Am J Physiol Heart Circ Physiol 2003; 284(2): 744– 750. doi: 10.1152/ ajpheart.00455.2002.

20. Kovács A, Oláh A, Lux Á et al. Strain and strain rate by speckle-track­ing echocardiography correlate with pressure-volume loop-derived contractility indices in a rat model of athlete’s heart. Am J Physiol Heart Circ Physiol 2015; 308(7): 743– 748. doi: 10.1152/ ajpheart.00828.2014.

21. Pagel PS, Kampine JP, Schmel­ing WT et al. Comparison of end-systolic pressure-length relations and preload recruitable stroke work as indices of myocardial contractility in the conscious and anesthetized, chronically instrumented dog. Anesthesiology 1990; 73(2): 278– 290.

22. Toombs CF, Vinten-Johansen J, Yokoyama H et al. Nonlinearity of indexes of left ventricular performance: effects on estimation of slope and diameter axis intercepts. Am J Physiol Heart Circ Physiol 1991; 260(6): 1802– 1809.

23. Shingu Y, Kubota S, Wakasa S et al. Slope in preload recruitable stroke work relationship predicts survival after left ventriculoplasty and mitral repair in patients with idiopathic cardiomyopathy. J Cardiol 2015; 65(2): 157– 163. doi: 10.1016/ j.jjcc.2014.04.010.

24. Glower DD, Spratt JA, Kabas JS et al. Quantification of regional myocardial dysfunction after acute ischemic injury. Am J Physiol 1988; 255(1): 85– 93.

25. Kristo G, Yoshimura Y, Keith BJ et al. Adenosine A1/ A2a receptor agonist AMP-579 induces acute and delayed precondition­ing against in vivo myocardial stunning. Am J Physiol 2004; 287(6): 2746– 2753. doi: 10.1152/ ajpheart.00493.2004.

26. Kristo G, Yoshimura Y, Niu J et al. The intermediary metabolite pyruvate attenuates stunn­ing and reduces infarct size in in vivo porcine myocardium. Am J Physiol 2004; 286(2): 517– 524. doi: 10.1152/ ajpheart.00777.2003.

27. Schmidt MR, Smerup M, Konstantinov IE et al. Intermittent peripheral tissue ischemia dur­ing coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol 2007; 292(4): 1883– 1890. doi: 10.1152/ ajpheart.00617.2006.

28. Landymore RW, Bayes AJ, Murphy JT et al. Precondition­ing prevents myocardial stunn­ing after cardiac transplantation. Ann Thorac Surg 1998; 66(6): 1953– 1957. doi: 10.1016/ S0003-4975(98)00902-3.

29. Tesak M, Kala P, Jarkovsky J et al. The value of novel invasive hemodynamic parameters added to the TIMI risk score for short-term prognosis assessment in patients with ST segment elevation myocardial infarction. Int J Cardiol 2016; 214: 235– 240. doi: 10.1016/ j.ijcard.2016.03.073.

30. Pagel PS, Kampine JP, Schmel­ing WT et al. Effects of nitrous oxide on myocardial contractility as evaluated by the preload recruitable stroke work relationship in chronically instrumented dogs. Anesthesiology 1990; 73(6): 1148– 1157.

31. Metra M, Faggiano P, D’Aloia A et al. Use of cardiopulmonary exercise test­ing with hemodynamic monitor­ing in the prognostic assessment of ambulatory patients with chronic heart failure. J Am Coll Cardiol 1999; 33(4): 943– 950. doi: 10.1016/ S0735-1097(98)00672-X.

32. Sugai TK, Tanaka A, Yoshizawa M et al. Influence of rotary blood pumps over preload recruitable stroke work. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 2367– 2370. doi: 10.1109/ IEMBS.2010.5627916.

33. Cotter G, Williams SG, Vered Z et al. Role of cardiac power in heart failure. Curr Opin Cardiol 2003; 18(3): 215– 222.

34. Fincke R, Hochman JS, Lowe AM et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. J Am Coll Cardiol 2004; 44(2): 340– 348. doi: 10.1016/ j.jacc.2004.03.060.

35. Chomsky DB, Lang CC, Rayos GH et al. Hemodynamic exercise testing. Circulation 1996; 94(12): 3176– 3183. doi: 10.1161/ 01.CIR.94.12.3176.

36. Tan LB. Cardiac pump­ing capability and prognosis in heart failure. The Lancet 1986; 328(8520): 1360– 1363. doi: 10.1016/ S0140-6736(86)92006-4.

Labels
Paediatric cardiology Internal medicine Cardiac surgery Cardiology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#