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SÚHRN
L-asparagináza je kľúčovým cytostatikom používaným v liečbe detskej akútnej lymfoblastickej leukémie od 70. rokov 
minulého storočia. Citlivosť odpovede na L-asparaginázu korešponduje s úspešnosťou terapie a celkovým prežívaním 
pacientov. L-asparagináza je enzým, ktorý depletuje asparagín a glutamín v sére pacientov. Leukemické bunky nie sú 
schopné si tento nedostatok nahradiť a prechádzajú do bunkovej smrti. Nie všetci pacienti však reagujú rovnako citlivo 
na podanie tohto cytostatika. Štúdium účinku L-asparaginázy je preto zásadné pre odstránenie inter-individuálnych 
rozdielov medzi pacientmi a vylepšenie terapie. V tomto prehľadovom článku sa pokúsime popísať nový mechanizmus 
účinku L-asparaginázy a jeho potenciálny dopad na citlivosť leukemických buniek k tomuto liečivu.
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SUMMARY 
Heřmanová I., Starková J.
Influence of cancer metabolism on the therapy of childhood leukaemia 
L-asparaginase is a key cytotoxic agent that has been used in the treatment of acute lymphoblastic leukaemia since the 
1970s. Responsiveness to L-asparaginase correlates with therapy outcome and overall patient survival. L-asparaginase 
is an enzyme that depletes asparagine and glutamine in patient serum. Leukaemia cells are unable to compensate 
for this deficiency and undergo cell death. Not all patients, however, respond uniformly to the administration of this 
cytotoxic agent. A study of the effect of L-asparaginase is therefore essential for eliminating inter-individual differ-
ences between patients and improving therapy. In this review article, we will attempt to describe a new mechanism 
of action of L-asparaginase and its potential impact on the sensitivity of leukaemia cells to this drug.
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TERAPIA DETSKEJ AKÚTNEJ 
LYMFOBLASTICKEJ LEUKÉMIE 

Úspešnosť liečby detskej akútnej lymfoblastickej 
leukémie (ALL) sa v posledných desaťročiach dramatic-
ky zlepšila. Do polovice 70. rokov minulého storočia išlo 
o ochorenie s veľmi vysokou úmrtnosťou. V súčasnej 
dobe dosahuje remisiu (vymiznutie blastov z kostnej 
drene a  mimodreňových priestorov) 99 % pacientov, 
prežitie bez relapsu choroby (prežívanie bez udalosti; 
event free survival, EFS) takmer 80 % a  celkové prežitie 
85 %[1]. Najčastejšou príčinou neúspechu liečby ALL je 
relaps ochorenia, ktorý postihuje 15–20 % pacientov. 
Za týmto úspechom stojí zavedenie nových liečebných 

protokolov a stratifikácia pacientov podľa rizikových 
faktorov. Zaujímavé je, že repertoár cytostatík, ktorý sa 
používa, pozostáva z rovnakých prípravkov už od začiat-
ku zavedenia štandardizovaného liečebného protokolu. 

Jednou z kľúčových látok, ktorá sa používa pri te-
rapii detskej ALL je L-asparagináza (ASNáza). ASNáza 
preukázateľne zlepšuje úspešnosť liečby, v monotera-
pii dosahuje kompletnú remisiu 40–60 % pacientov. 
Extenzívne klinické štúdie potvrdili benefit intenzívnej 
ASNázovej terapie v  porovnaní s  menej intenzívnou 
[2, 3]. Liečebný protokol DFCI 91-01 preukázal signifi-
kantne lepší výsledok liečby detských pacientov s ALL, 
pravdepodobne vďaka intenzifikácii podávania ASNázy. 
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Konkrétne, pacienti, ktorí tolerovali 25 a menej týždňov 
ASNázu mali horšie výsledky ako tí, ktorí dostávali 
ASNázu najmenej 26 týždňov. V ďalšej štúdii boli porov-
nané výsledky dvoch protokolov – COALL (nemecká pra-
covná skupina) a DCOG (Dutch Childhood Oncology Group). 
COALL používa vyššiu kumulatívnu dávku ASNázy. To 
možno vysvetľuje lepší EFS u ETV6-RUNX1 pozitívnych 
pacientov liečených COALL (5 ročné EFS 80 %) v porov-
naní s ETV6-RUNX1 pozitívnymi pacientmi liečenými 
DCOG protokolom (5 ročné EFS 73 %). Napriek tomu, že 
sa používa už niekoľko desiatok rokov, mechanizmus 
cytotoxického účinku a príčiny rezistencie neboli do-
siaľ dostatočne objasnené. Rezistencia na ASNázu je 
negatívny prognostický faktor [4, 5]. 

L-ASPARAGINÁZA
Základná charakteristika ASNázy a mechanizmus 
účinku

ASNáza je enzým, ktorý sa vyskytuje v  rastlinách, 
živočíchoch a mikroorganizmoch. Primárne hydroly-
zuje asparagín za vzniku aspartátu a amoniaku (obr. 1).  
Väčšina typov ASNáz má však i  glutaminázovú ak-
tivitu, čo znamená, že metabolizuje aj glutamín na 
glutamát a  amoniak. Glutaminázová aktivita tvorí 
len 3–9 % asparaginázovej aktivity, v  závislosti na 
zdroji enzýmu [6]. Antileukemický účinok bol pôvodne 
prisudzovaný predovšetkým asparaginázovej aktivi-
te enzýmu. Deplécia glutamínu bola považovaná za 
príčinu niektorých nežiaducich účinkov a bola snaha 
vyvinúť ASNázu bez glutaminázovej aktivity. Nové 

štúdie však ukazujú, že deplécia glutamínu je pre 
cytotoxický účinok tiež potrebná [7]. Existujú štúdie, 
ktoré ukázali, že čím viac sú bunky citlivé na ASNázu, 
tým viac sú závislé výlučne na asparagíne. A navyše, 
účinnosť glutaminázovej aktivity ASNázy nie je dôle-
žitá pre bunky s nízkou hladinou asparagín syntetázy 
(ASNS), antagonistu ASNázy [8]. 

Objav terapeutického účinku L-asparaginázy 
Protinádorový účinok ASNázy bol prvýkrát popí-

saný už v roku 1953, kedy Kidd et al. zistili, že poda-
nie morčacieho séra inhibuje v  myšiach rast lymfó-
mu [9]. Ďalšie štúdie ukázali, že príčinou regresie 
tumoru je enzým ASNáza. V  roku 1964 bolo zistené, 
že je možné ASNázu izolovať z baktérie Escherichia coli  
(E. coli), vďaka tomu bolo možné začať produkovať a po-
užívať tento enzým vo väčšom množstve. Súčasne boli 
zahájené klinické štúdie, ktoré potvrdili protinádorový 
účinok ASNázy. ASNáza bola následne zaradená do 
liečebných protokolov. Pri porovnávacích štúdiách bolo 
potvrdené, že ASNáza signifikantne zvýšila EFS a OS 
(celkové prežívanie, overall survival) [2, 3].

Mechanizmy vzniku rezistencie na L-asparaginázy
Napriek tomu, že je ASNáza v terapii ALL veľmi účin-

ná, medzi jednotlivými pacientmi existujú rozdiely v cit-
livosti, vrátane prípadov rezistencie k tomuto liečivu. 
Rozdielna bazálna hladina génu pre ASNS bola považo-
vaná za jednu z možných príčin interindividuálnych roz- 
dielov. Experimenty na modeloch leukemických bun-

kových línií najprv potvrdili 
predpoklad korelácie expresie 
ASNS s citlivosťou k ASNáze. Pri 
snahe aplikovať tieto poznatky 
vo vzorkách pacientov sa však 
situácia značne skomplikovala. 
Pri analýze expresných profilov 
ALL pacientov nebola expresia 
génu pre ASNS medzi prvými 35 
génmi, ktoré rozdelili pacien-
tov podľa citlivosti k ASNáze do 
skupín pomocou hierarchického 
klastrovania [10]. Dalšie nezrov-
nalosti vo vzťahu ASNS a ASNázy 
sa ukázali počas štúdia senzitivi-
ty k  tomuto liečivu u  pacientov 
s  fúznym génom  ETV6-RUNX1. 
In vitro testy u  týchto pacientov 
poukázali na vyššiu citlivosť na 
ASNázu v  porovnaní s  blastami 
ETV6-RUNX1-negatívnych paci-
entov [11]. Naša pracovná sku-

HEŘMANOVÁ I. et al.

Obr. 1. Mechanizmus účinku L-asparaginázy v normálnych a leukemických bunkách
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pina [12] paralelne s  holandskou skupinou Stams 
et al. [13] publikovala paradoxne zvýšenú expresiu 
génu pre ASNS u  ETV6-RUNX1-pozitívnych pacien-
tov. Nasledujúce štúdie odhalili, že problematika 
vzťahu medzi expresiou ASNS a citlivosťou ALL blas-
tov k  ASNáze je komplexnejšia. Práce publikovaná 
Finem et al. prezentujú klastrovanie ALL bunkových 
línií rezistentných, resp. senzitívnych k ASNáze na 
základe bazálnej expresie ASNS [14]. Klinické vzorky 
pacientov sa však pri rovnakom type analýzy takto 
nerozdelili. Bazálna expresia génu pre ASNS teda 
nebola prediktívna pre odpoveď primárnych vzoriek 
k ASNáze. Po podaní ASNázy však došlo k veľmi po-
dobným zmenám expresie veľkého množstva génov 
v spomínaných líniách aj v klinických vzorkách. 

Je zrejmé, že sa na účinku ASNázy i na vzniku rezis-
tencie podieľa okrem ASNS viac faktorov. Jedným z nich 
môže byť aktivačný transkripčný faktor 5 (activating 
transcription factor 5, ATF5). ATF5 je súčasťou signalizačnej 
dráhy, ktorá je aktivovaná pri nedostatku aminokyselín 
a vedie k zvýšeniu expresie génu pre ASNS. Leukemické 
bunky rezistentné k ASNáze majú v porovnaní so sen-
zitívnymi bunkami zvýšenú expresiu ATF5. Navyše 

bol u ALL pacientov objavený polymorfizmus v ATF5. 
Pacienti s týmto polymorfizmom majú nižší EFS, pri-
čom táto spojitosť bola dokázaná len u pacientov lieče-
ných ASNázou [15].

Medzi ďalšie príčiny rozdielnej citlivosti ALL pa- 
cientov k ASNáze môže patriť strata proteínovej kinázy 
GCN2 (general control nonderepressible kinase 2). Táto kináza 
má jediný známy substrát, α-podjednotku eukaryo-
tického iniciačného faktoru 2 (eIF2), a  je nutná pri 
bunkovej adaptácii na nedostatok aminokyselín. Na 
myšom modeli bolo dokázané, že poškodenie funkcie 
GCN2 zvyšuje citlivosť k ASNáze [16, 17]. 

Úspešnosť terapie môže byť ovplyvnená tiež roz-
dielnou farmakokinetikou. ASNáza môže byť de-
gradovaná lyzozomálnymi proteázami asparaginyl 
endopeptidázou a  Cathepsinom B. Uvedené prote-
ázy sú produkované lymfoblastmi. Štiepenie vedie 
k inaktivácii a vystaveniu epitopov imunitnej odpo-
vede [18]. Predĺžená účinnosť  ASNázy bola objavená 
u pacienta s germline mutáciou v géne kódujúcom 
Cathepsin B [19].

Svoju úlohu môže tiež zohrávať mikroprostre-
die kostnej drene. Mezenchymálne bunky kost-

nej drene majú schopnosť  
sekrécie asparagínu a  in vitro 
ochrániť blasty pred následkami 
podania ASNázy [20]. Meraním 
obsahu asparagínu vo vzorkách 
pacientov však bolo dokázané, 
že po podaní ASNázy nedochádza 
k  zvýšeniu obsahu asparagínu 
v kostnej dreni [21]. Protektívna 
úloha mezenchymálnych kme-
ňových buniek je preto diskuta-
bilná.

Recentné publikované dáta 
poukazujú na vplyv adipocytov 
v kostnej dreni, ktoré sú schopné 
syntetizovať glutamín a do veľkej 
miery znižovať citlivosť pacientov 
na ASNázu [22].

Použitie L-asparaginázy 
u iných malígnych ochorení

ASNáza je zahrnutá do liečeb-
ných protokolov výhradne u ALL 
a non-Hodgkinových lymfómov. 
Jej potenciálny terapeutický úči-
nok sa však študuje aj u  iných 
typov hematologických malignít. 
Cytotoxický účinok ASNázy bol 
potvrdený na primárnych AML 

Obr. 2. Hallmarks of cancer
Popísané Hannahan a Weinberg, Cell 2011, kde priradili novú črtu nádorových buniek, a to 
deregulovaná bioenergetika.

proLékaře.cz | 28.1.2026



TRANSFUZE HEMATOL. DNES      24, 2018256

(akútna myeloidná leukémia) bunkách [23]. ASNáza 
je obmedzene transportovaná z  vaskulárneho do ex-
travaskulárneho prostredia, preto je komplikované 
jej využitie u  solídnych nádorov [24]. Napriek tomu 
existujú štúdie, ktoré sa prípadným použitím ASNázy 
pre liečbu solídnych tumorov zaoberajú. Jedná sa 
predovšetkým o  nádory ovarií, u  ktorých preklinic-
ké štúdie dokázali anti-angiogénnu aktivitu ASNázy 
a  senzitivitu ovariálnych nádorových línií k  ASNáze  
[25, 26]. Druhá fáza klinických štúdií však bola pre 
vysokú toxicitu ASNázy ukončená [27]. Účinok ASNázy 
je ďalej študovaný u  hepatocelulárneho karcinómu, 
u nádorov pankreasu, nádorov prostaty a nádorov moz-
gu [28–31].

METABOLICKÉ ZMENY 
NÁDOROVÝCH BUNIEK

Nepretržitý vývoj v oblasti charakterizácie nádoro-
vých buniek ukazuje, že nádorové ochorenia sú značne 
heterogénne. Môžeme ich rozdeliť podľa orgánového 
alebo tkanivového pôvodu, prípadne podľa molekulár-
neho subtypu, čím získame veľké množstvo podskupín, 
ktoré sa líšia prognózou, terapiou a výsledkom liečby. 
Pokrok v  sekvenovaní DNA a  v  ďalších analytických 
technológiách umožnil rozlíšiť genetickú heterogenitu 
medzi histologicky podobnými tumormi a  rozdielne 
fenotypy buniek z jednej nádorovej populácie. Avšak 
existuje skupina spoločných čŕt zahrňujúca biologické 
vlastnosti a  schopnosti, ktoré súvisia s  nádorovým 
bujnením. Jedna z týchto čŕt, ktorú prvýkrát popísali 
už skoro pred sto rokmi, jej rola však bola oficiálne 
uznaná až v roku 2011, je deregulovaný metabolizmus 
(obr. 2) [32]. 

Thompson et al. ukázali, že mutácie v protoonko-
génoch a nádorovo supresorových génoch sú priamo 
spojené s príjmom výživy a bioenergetickými požiadav-
kami nádorových buniek. Z toho vyplýva, že podobne 
ako iné abnormálne vlastnosti nádorových buniek, aj 
nádorový metabolizmus je prvotne ovplyvnený prítom-
nosťou genetických zmien [33, 34].

Tie vedú k dysregulácii hlavných signálnych dráh 
ovplyvňujúcich bioenergetické a  biosyntetické pro-
cesy. Príkladom genetických lézií identifikovaných 
u  leukemických pacientov, ktoré tieto javy ovplyv-
ňujú, sú IDH1/2, MYC, AKT, PTEN a p53. PTEN, AKT, 
a  zmeny PI3K boli zistené v  47,7 % prípadov akútnej 
T-bunkovej lymfoblastickej leukémie (T-ALL) [35, 36]. 
Znížená aktivita alebo úplná strata PTEN v myších mo-
deloch indukovala T-ALL a T-bunkový lymfóm a strata 
PTEN určovala závažnosť myeloidných malignít [37, 
38]. PTEN inhibuje jeden z hlavných regulačných pro- 
striedkov bioenergetiky a  biosyntetických procesov, 

dráhu PI3K/AKT/mTOR. Mutovaný MYC sa vysky-
tuje u  B-bunkových neoplazií a  s  vysokou frekven- 
ciou u chronickej lymfoblastickej leukémie (CLL) [39]. 
Okrem toho hladina MYC je indukovaná mnohými 
dráhami, ktoré sú u leukémie pozmenené, ako naprí-
klad NOTCH1 alebo PI3K [40,41]. Zvýšená expresia MYC 
zvyšuje glykolýzu, katabolizmus glutamínu a mitoge-
nézu [42–44]. Navyše MYC-indukované nádory u myších 
modelov sú závislé na metabolizme glutamínu [45]. 
Mutácie v TP53 sú asociované s nepriaznivou prognózou 
CLL a s rezistenciou na terapiu [46, 47]. Proteín TP53 vy-
važuje glykolýzu a OXPHOS, aby obmedzil uvoľňovanie 
voľných radikálov – ROS [48, 49]. Všetky tieto genetické 
zmeny vedú onkogénny metabolický program, ktorý 
udržuje bunky nažive, poskytuje stavebné kamene pre 
neobmedzený rast buniek a mitogenézu.

CHARAKTERISTIKA NÁDOROVÉHO 
METABOLIZMU

Nádorové bunky majú v porovnaní so zdravými bun-
kami iný metabolický profil, respektíve uprednostňujú 
iné metabolické dráhy [32]. Zdravé diferencované bunky 
tvoria ATP v aeróbnych podmienkach prostredníctvom 
oxidatívnej fosforylácie. V anaeróbnych podmienkach 
využívajú menej efektívnu glykolýzu. Počas oxidatív-
nej fosforylácie vzniká z  jednej molekuly glukózy 36 
molekúl ATP, anaeróbnou glykolýzou vzniknú z  jed-
nej molekuly glukózy dve molekuly ATP. Nádorové 
bunky majú zvýšenú spotrebu glukózy, pričom len 
jej menšia frakcia je oxidovaná v  Krebsovom cykle. 
Väčšina glukózy je použitá na produkciu laktátu, a to 
aj v prítomnosti kyslíka, preto sa táto reakcia nazýva 
aeróbna glykolýza. Zvýšenie aeróbnej glykolýzy na 
úkor oxidatívnej fosforylácie bola podľa objaviteľa 
pomenovaná Warburgov efekt [50, 51]. Dôvody, prečo 
nádorové bunky s preukázateľne vyššími energetický-
mi nárokmi využívajú menej efektívnu glykolýzu, sa 
stále študujú. Pôvodná hypotéza, že nádorové bunky 
majú poškodené mitochondrie už bola vyvrátená [52]. 
Prečo teda k Warburgovmu efektu dochádza? Zvýšený 
obrat glukózy je pre nádorové bunky výhodný. Napriek 
tomu, že v priebehu glykolýzy vzniká menej molekúl 
ATP ako počas oxidatívnej fosforylácie, glykolytický 
tok je dostatočne rýchly nato, aby pokryl energetic-
ké nároky. Počas degradácie glukózy navyše vzniká 
množstvo medziproduktov potrebných pre biosyn-
tetické dráhy, vrátane ribózových cukrov na tvorbu 
nukleotidov; glycerolu a  citrátu na syntézu lipidov; 
neesenciálnych aminokyselín; a  redukovanej formy 
Nikotinamidadenindinukleotidfosfátu (NADPH). Tieto 
medziprodukty vznikajú v rozvetvených reakciách gly-
kolýzy, ako je napríklad pentózový cyklus [53, 54].

HEŘMANOVÁ I. et al.
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ZÁVISLOSŤ NA GLUTAMÍNE A ASPARAGÍNE
Významným substrátom je okrem glukózy tiež 

glutamín. Glutamín bol dlhodobo považovaný za ne-
esenciálnu aminokyselinu, ktorej primárna funkcia je 
ukladať dusík vo svaloch a cirkulovať medzi orgánmi. 
Cicavčie bunky môžu syntetizovať glutamín vo väčšine 
tkanív, pokiaľ sa však v priebehu rastu alebo ochore-
nia zvýšia nároky na prítomnosť glutamínu, stáva sa 
aminokyselinou esenciálnou, preto sa nazýva pod- 
mienečne esenciálny. Proliferujúce bunky majú vysokú 
spotrebu glutamínu, čo dokazuje, že je glutamín ako 
substrát veľmi univerzálny. Metabolizmus glutamí-
nu je možné rozdeliť podľa využitia γ-dusíka (syntéza 
nukleotidov, hexosamínov), α-dusíka alebo uhlíkového 
reťazca. Druhé dva typy reakcií využívajú ako substrát 
glutamát. Hoci majú nádorové bunky vysoký obsah 
intracelulárneho glutamátu, udržanie jeho hladiny zá-
visí od schopnosti konvertovat glutamín na glutamát, 
pretože glutamínu je v extracelulárnom prostredí na 
rozdiel od glutamátu dostatok. Tento proces umožňuje 
prítomnosť glutaminázy, mitochondriálneho enzýmu, 
ktorý je vysoko exprimovaný v nádorových bunkách. 
Na experimentálnych modeloch bolo potvrdené, že 
inhibícia glutaminázovej aktivity vedie k poklesu rastu 
nádorových buniek a xenograftov [55, 56]. Glutamín je 
preto považovaný v prípade nádorového rastu za esen-
ciálny [57]. V niektorých nádorových bunkách je gluta-
mín primárny mitochondriálny substrát a je potrebný 
pre udržanie mitochondriálneho membránového po-
tenciálu. Deamináciou glutamínu na pyruvát navyše 
vzniká NADPH, ktorý je nutný pre syntézu lipidov 
a pre redoxnú kontrolu. Dochádza tak tiež k doplneniu 
intermediátov Krebsovho cyklu (anaplerosis). Ďalej je 
potrebný pre vstrebávanie aminokyselín a  aktiváciu 
kinázy mTOR. Glutamín sa podieľa na metabolizme, 
bunkovej signalizácii a génovej expresii, preto je snaha 
využiť terapeutiká, ktoré zasahujú do metabolizmu 
glutamínu, veľmi atraktívna a opodstatnená. 

Asparagín je neesenciálna aminokyselina využívaná 
pri biosyntéze proteínov. Prekurzorom asparagínu je 
oxaloacetát. Transamináza prenesie amino skupinu 
z  glutamátu na oxaloacetát za produkcie aspartátu 
a 2-ketoglutarátu. ASNS zasa prenesie amino skupinu 
z glutamínu na aspartát za vzniku asparagínu. V euka-
ryotických bunkách ASNS nepoužíva iný zdroj amino 
skupiny, preto je označovaná ako glutamín-dependent-
ná. Asparagín vstupuje do Krebsovho cyklu zvyčajne 
ako oxaloacetát.

Pri skúmaní protinádorového účinku ASNázy sa naj-
prv zistilo, že leukemické bunky v porovnaní s bunkami 
zdravými majú nižšiu aktivitu ASNS [58, 59]. Ďalej bola 
potvrdená nízka hladina expresie génu pre ASNS, zhod-

ná s nízkou hladinou proteínu. Vznikla tak hypotéza, 
potvrdená niekoľkými publikáciami [11], že za účinkom 
ASNázy stojí závislosť leukemických buniek na extra-
celulárnom asparagíne. Zdravé tkanivá sú podľa tejto 
teórie schopné stratu asparagínu kompenzovať vďaka 
dostatočne aktívnej ASNS, prípadne zvýšením expresie 
tohto enzýmu v  odpovedi na asparagínovú depléciu  
(viď obr. 1). Nedostatok asparagínu vedie v leukemic-
kých bunkách k  poškodeniu proteosyntézy, syntézy 
DNA, RNA a následne k apoptóze.

Závislosť na asparagíne a glutamíne je úzko spoje-
ná. Adipocyty, ktoré produkujú signifikantné množ-
stvo glutamínu inhibujú cytotoxický efekt ASNázy. 
Navyše, v  myšiach transplantovaných ALL bunkami 
bolo preukázané, že obezita významne znižuje účinok 
ASNázy [22]. Schopnosť asparagínu kompenzovať stratu 
glutamínu pri dlhotrvajúcom deficite bola popísaná u  
bunkových línií nádorov mozgu [60].  

ÚČINOK L-ASPARAGINÁZY 
NA METABOLICKÉ PREPROGRAMOVANIE 
LEUKEMICKÝCH BUNIEK

Práce, ktoré poukazujú na vplyv ASNázy na bioener-
getické a biosyntetické procesy v bunkách, siahajú už 
do 70. rokov minulého storočia. Saunders popísal, že 
ASNáza inhibuje syntézu RNA a DNA, a tým zvyšuje 
svoj cytotoxický účinok [61]. V ďalšej práci autori uká-
zali inhibičný účinok ASNázy na syntézu inzulínu, 
ktorej následkom došlo u niektorých pacientov k hy-
perglykémii [62]. V tom istom období vyšli práce popi-
sujúce ASNázu ako dysregulátora glykozylácie, ktorá je 
zásadná pre aktivitu bielkovín [63]. Proces glykozylácie 
vychádza z  jednej z  rozvetvených reakcií glykolýzy. 
Novšia práca ukázala, že cez pozmenenú glykozyláciu 
proteínov ASNáza ovplyvňuje mikroprostredie, a tým 
inhibuje invazivitu a angiogenézu u ovariálneho kar-
cinómu [64]. Vplyv ASNázy na syntézu proteínu bol tiež 
popísaný vo viacerých prácach [65, 66]. 

V našej poslednej publikácii sme popísali komplex-
nejší obraz účinku ASNázy na metabolické procesy 
leukemických buniek (obr. 3). Študovali sme efekt 
ASNázy na tri hlavné bioenergetické dráhy: oxidatívna 
fosforylácia, glykolýza a  oxidácia mastných kyselín. 
Leukemické bunky ošetrené ASNázou vykazovali zní-
ženú glykolýzu, zvýšenú oxidáciu mastných kyselín, 
ktorej následkom došlo pravdepodobne k zvýšenej ak-
tivite respiračného reťazca. Zaujímavé bolo, že ATP sa 
nezvýšilo, takže sa nejednalo o  zvýšenie oxidatívnej 
fosforylácie, ktorej výsledným produktom je práve ATP. 
Inhibíciu glykolýzy sme dokázali na zníženom príjme 
glukózy značenej radioaktívne a tiež zníženou hladi-
nou extracelulárneho laktátu, produktu glykolýzy. 
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Tiež sme detekovali zníženú hladinu proteínu c-MYC 
ako aktivátora glykolýzy a glukózového transportéra 1.  
Zmeny v  oxidácii mastných kyselín sme detekovali 
ako zmenu množstva 3H-H2O pomocou radioaktívnej 
metódy. 3H-H2O vzniká ako produkt oxidovaného ra-
dioaktívne značeného 3H-palmitátu v mitochondriách. 
Oxidácia mastných kyselín slúži k produkcii NADH, 
FADH2 a acetyl-CoA, ktoré doplňujú Krebsov cyklus, čo 
následne vedie k aktivácii mitochondriálnej oxidatívnej 
fosforylácii. Oxidácia mastných kyselín je preto dôleži-
tá pre bunkový rast nádorových buniek v normálnych 
aj deprivovaných podmienkach [67,68]. Podiel oxidácie 
mastných kyselín na bunkovom prežívaní bol popísaný 
u rôznych typov nádorov, ako je difúzny veľkobunko-
vý B lymfóm, mnohopočetný myelóm a  glioblastóm 
[69–71]. Aktivita oxidácie mastných kyselín môže tiež 
spôsobovať chemorezistenciu, čo bolo ukázané na ade-
nokarcinóme pľúc. Inhibítor oxidácie mastných kyselín 
etomoxir zvýšil citlivosť tohto nádoru k paklitaxelu [72]. 
Farmakologická inhibícia oxidácie mastných kyselín 

by mohla byť prospešná aj pri liečbe hematologických 
ochorení, na myšom modeli s myeloidnou leukémiou 
bolo ukázané, že potencuje účinok konvenčnej che-
moterapie [73]. 

Potenciálne klinický zaujímavý výsledok sme do- 
siahli, keď sme leukemické línie a  tiež leukemické 
bunky izolované z kostnej drene pacientov kultivovali 
samostatne s ASNázou alebo pre porovnanie v kombi-
nácii s etomoxirom v ex vivo podmienkach. Ukázali sme, 
že inhibítor oxidácie mastných kyselín zvyšuje citlivosť 
leukemických buniek na ASNázu. Z týchto výsledkov 
vyplýva, že ASNáza okrem anti-leukemického účinku 
spúšťa tiež záchranné procesy, medzi ktoré môžeme za-
radiť aktiváciu oxidácie mastných kyselín. Ďalší proces, 
ktorý bol v našom modeli po podaní ASNázy zmenený, 
bola autofágia. Autofágia bola v súvislosti s účinkom 
ASNázy opakovane popisovaná a tiež bolo ukázané, že 
inhibícia autofágie pomocou hydrochloroquinu vedie 
k zlepšeniu cytotoxických účinkov ASNázy v in vitro aj in 
vivo podmienkach na myších xenograftoch [74]. 

ZÁVER
Pozmenený metabolizmus 

sa účastní leukemogénneho 
procesu a tiež samotného prie-
behu ochorenia. Súčasné pu-
blikácie popisujú metabolické 
preprogramovanie nádorových 
buniek, ktoré je schopné znížiť 
efektívnosť terapie a eventuál-
ne viesť k  vzniku rezistencie. 
Rezistencia na cytostatiká je 
jednou z príčin vzniku relapsu. 
V  tomto prehľadovom článku 
sme sa snažili podrobne popísať 
účinok ASNázy, ktorej podanie 
je kľúčové v liečbe detskej ALL. 
Ďalej sme popísali zmeny v me-
tabolizme leukemických buniek 
pri podaní ASNázy, ktoré ne-
budú výnimočné len pre toto lie-
čivo. Existujú aj iné cytostatiká, 
u ktorých bol tento jav popísa-
ný: dexametazón u  chronickej 
lymfoblastickej leukémie, ima-
tinib u  chronickej myeloidnej 
leukémie a bortezomib u mno-
hopočetného myelómu [75–77]. 
Veríme, že pochopenie metabo-
lických zmien v dôsledku adap-
tácie na podávanú cytostatickú 
liečbu by mohlo:

Obr. 3. Výsledky z publikácie Heřmanová et al., Leukemia 2016 zhrňujúce vplyv L-asparaginázy na 
hlavné bioenergetické procesy leukemických buniek
OXPHOS – oxidatívna fosforylácia, FAO – fatty acid oxidation, oxidácia mastných kyselín. 
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a) lepšie stratifikovať pacientov podľa citlivosti/rezis-
tencie,
b) odhaliť procesy zapojené do mechanizmu rezisten-
cie a 
c) znížiť závažné vedľajšie účinky.

Nádorový metabolizmus sa v súčasnosti študuje ako 
nová možnosť cielenej terapie. Klinické štúdie testujúce 
účinok anti-metabolických látok v monoterapii alebo 
v  kombinácii so súčasnou terapiou v  nasledujúcich 
rokoch odhalia jej výhody, ale aj nevýhody a možnosti 
využitia v klinickej praxi.  
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