#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Annual monitoring of side effects of administering sitagliptin in patients with type 2 diabetes mellitus


Authors: Michal Anděl 1;  Pavel Škrha 1;  Pavel Kraml 1;  Jana Potočková 1;  Iva Hoffmanová 1;  Elena Šilhová 1;  Josef Fontana 1;  Anna Richterová 3;  Martin Gadiredi 4;  Petr Bušek 2;  Lucie Šromová 2;  Aleksi Šedo 2
Authors‘ workplace: Diabetologické a nutriční centrum 3. LF UK a FN Královské Vinohrady, Praha, Centrum výzkumu diabetu, metabolizmu a výživy 3. LF UK v Praze 1;  Ústav biochemie a experimentální onkologie 1. LF UK v Praze 2;  Diabetologická ambulance, Praha 3;  Diabetologická ambulance, Praha 4
Published in: Vnitř Lék 2016; 62(6): 455-461
Category: Reviews

Overview

We present the results of an independent, drug company-unsupported follow-up of patients with type 2 diabetes mellitus (T2DM) treated with the dipeptidyl peptidase 4 inhibitor sitagliptin. 29 patients (16 men, 13 women) used sitagliptin 100 mg daily for one year as an add-on to their chronic antidiabetic therapy. 16 type diabetic patients formed a control group – they used their chronic antidiabetic therapy without sitagliptin. 10 additional patients (6 men and 4 women) were enrolled in the study and treated with sitagliptin for one month. Body weight, BMI, glycaemia, glycated hemoglobin (HbA1c), cholesterolemia, triacylglycerolemia and serum amylases were determined and abdominal ultrasonography was performed. Because significant changes in immunological tests had been found especially after one month of treatment, 10 additional patients (6 men and 4 women) were enrolled in the study and treated with sitagliptin for one month. Sitagliptin treatment led to a significant body weight loss of 1 kg per year. In the control group, no significant change was observed. Similar results were noticed in HbA1c level and fasting glycaemia – mild but statisticaly significant reduction in the sitagliptin group both after one month and one year (not in HbA1c), no difference in the control group. There was no change in cholesterolemia, or in triacylglycerolemia. In 33% of patients in the sitagliptin group, the level of liver steatosis decreased by ultrasonographic evaluation. This was not found in any of the patients case in the control group. The serum amylase levels increased slightly over the upper limit in two sitagliptin treated patients. In the other sitagliptin treated patients serum amylase remained within the laboratory limits, but slight, statistically significant elevation of serum amylases was observed in the intervened group. This result was not found in the control group. There were not differences in the frequency between occurence of mild respiratory infections in the sitagliptin and control group. Marginally significant decrease was observed in the intervened group.

Key words:
sitagliptin – type 2 diabetes mellitus – side effects


Sources

1. Ahrén B. Glucagon-like peptide-1 (GLP-1): a gut hormone of potential interest in the treatment of diabetes. Review. Βioassays 1998; 20(8): 642–651.

2. American Diabetes Association. Standards of medical care in diabetes-2015. Diabetes Care 2015; 38(Suppl 1): S1-S93.

3. Anděl M, Klimeš I. Glukagon: fyziologie, patofyziologie a klinika. Avicenum: Praha: 1986.

4. Ben-Shlomo S, Zvibel I, Shnell M et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol 2011; 54(6): 1214–1223.

5. Busek P, Stremenová J, Krepela E et al. Modulation of substance P signaling by dipeptidyl peptidase-IV enzymatic activity in human glioma cell lines. Physiol Res 2008; 57(3): 443–449.

6. Buttler PC, Dry S, Elashoff RR. GLP-1 based therapy for diabetes: what you do not know can hurt you. Diabetes Care 2010; 33(2): 453–455.

7. Buttler PC, Matveyenko AV, Dry S et al. Glucagon-like peptide 1 therapy and exocrine pancreas: innocent bystander or friendly fire. Diabetologia 2010; 53(1): 1–6.

8. Lando H, Alattar M, Dua A. Elevated Amylase and Lipase Levels in Patients Using Glucagonlike Peptide-1 Receptor Agonists or Dipeptidyl-Peptidase-4 Inhibitors in the Outpatient Setting. Endocr Pract 2012; 18(4): 472–477.

9. Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest 2007; 117(1): 24–32.

10. Gale EA. Smoke or fire? Acute pancreatitis and the liraglutide trials. Diabetes Care 2015; 38(6): 948–950.

11. Gokhale M, Buse JB, Gray CL et al. Dipeptidyl-peptidase-4 inhibitors and pancreatic cancer: a cohort study. Diabetes Obes Metab 2014; 16(12): 1247–1256.

12. Green JB, Bethel MA, Armstrong PW et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. New Engl J Med 2015; 373(3):232–242. Erratum in Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. [N Engl J Med. 2015].

13. Gutniak M, Orskov C, Holst JJ et al. Antidiabetogenic effect of glucagon-like peptide-1 (7–36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992; 326(20): 1316–1322.

14. Gupta NA, Mells J, Dunham RM et al. Glucagon-like peptide- 1 receptor is present on humanhepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010; 51(5): 1584–1592.

15. Hernaez R, Lazo M, Bonekamp S et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology 2011; 54(3): 1082–1090.

16. Holman RR, Paul SK, Bethel MA et al. 10 Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577–1589.

17. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87(4): 1409–1439.

18. Holst JJ. Pharmacology of GLP-1 based therapies. Brit J Diab Vasc Dis 2008; 8(2 Suppl): S10-S18.

19. Kimbal CP, Murlin JR. Aqueous extracts of pancreas. III. Some precipitation reactions of insulin. J Biol Chem 1923; 58(1): 337–346.

20. La Barre J, Stil EU. Studies on physiology of secretin III. Further studies on the effects of secretin on blood sugar. Am J Physiol 1930; 91: 649–653.

21. Lee J, Hong SW, Chae SW et al. Exendin-4 improves steatohepatitis by increasing Sirt1 expression in high-fat diet-induced obese C57BL/6J mice. PLoS One 2012; 7(2): e31394. Dostupné z DOI: http://dx.doi.org/10.1371/journal.pone.0031394.

22. Mikhail N. Safety of dipeptidyl peptidase 4 inhibitors for treatment of type 2 diabetes. Curr Drug Saf 2011; 6(5): 304–309.

23. Nagel AK, Ahmed-Sarwar N, Werner PM et al. Dipeptidyl Peptidase-4 Inhibitor-Associated Pancreatic Carcinoma: A Review of the FAERS Database. Ann Pharmacother 2016; 50(1): 27–31.

24. Nauck MA, Niederreichholz U, Ettler R et al. Glucagon-like peptide-1 inhibition of gastric emptying outweights its insulinotropic effects in healthy humans. Am J Physiol 1997; 273(5 Pt 1): E981-E988.

25. Nauck MA, Weber I, Bach I et al. Normalization of fasting glycaemia by intravenous GLP-1 ([7–36 amide] or [7–37]) in type 2 diabetic patients. Diabet Med 1998; 15(11): 937–945.

26. Nauck MA, Meininger G, Sheng D et al. Sitagliptin Study 024 Group: Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab 2007; 9(2): 194–205.

27. Nauck M. The modulating effects of GLP-1 in type 2 diabetes. Br J Diabetes Vasc Dis 2008; 8(Suppl 2): S1-S2 .

28. Piscaglia F, Salvatore V, Mulazzani L et al. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage. Ultraschall Med 2016; 37(1): 1–5.

29. Raz I, Chen Y, Wu M et al. Efficacy and safety of sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes. Curr Med Res Opin 2008; 24(2): 537–550.

30. Saito T, Ohnuma K, Suzuki H et al. Polyarthropathy in type 2 diabetes patients treated with DPP4 inhibitors. Diabetes Res Clin Pract 2013; 102(1): e8-e12. Dostupné z DOI: http://dx.doi.org/10.1016/j.diabres.2013.07.010.

31. Samson SL, Bajaj M. Potential of incretin-based therapies for non-alcoholic fatty liver disease. J Diabetes Complications 2013; 27(4): 401–406.

32. Sanyal AJ. [American Gastroenterological Association]. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002; 123(5): 1705–1725.

33. Scheen AJ. Safety of dipeptidyl peptidase-4 inhibitors for treating type 2 diabetes. Expert Opin Drug Saf 2015; 14(4): 505–524.

34. Sromova L, Busek P, Mareckova H et al. The effect of dipeptidyl peptidase-IV inhibition on the immune functions in patients with type 2 diabetes. FEBS J 2014; 281(Suppl 1): 281.

35. Stulc T, Sedo A. Inhibition of multifunctional dipeptidyl peptidase-IV: is there a risk of oncological and immunological adverse effects? Diabetes Res Clin Pract 2010; 88(2): 125–131.

36. Svačina Š. Inkretinová léčba a metabolický syndrom. Vnitř Lék 2011; 57(4): 417–421.

37. Svegliati-Baroni G, Saccomanno S, Rychlicki C et al. Glucagon-like peptide- 1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int 2011; 31(9): 1285–1297.

38. Škrha P, Anděl M, Šedo A. DPP-4 inhibitory a autoimunita. DMEV 2014; 17(2): 61–64.

39. Špinar J, Špinarová L, Vítovec J. Studie TECOS, EXAMINE a SAVOR: Čím se liší a co přinášejí? Vnitř Lék 2015; 61(11): 976–983.

40. Tella SH, Rendell MS. DPP-4 inhibitors: focus on safety. Expert Opin Drug Saf 2015; 14(1): 127–140.

41. Thomsen RW, Pedersen L, Møller N et al. Incretin-based therapy and risk of acute pancreatitis: a nationwide population-based case-control study. Diabetes Care 2015; 38(6): 1089–1098.

42. Tseng CH. Sitagliptin and pancreatic cancer risk in patients with type 2 diabetes. Eur J Clin Invest 2016; 46(1): 70–79.

43. Williams-Herman D, Johnson J, Teng R et al. Efficacy and safety of initial combination therapy with sitagliptin and metformin in patients with type 2 diabetes: a 54-week study. Curr Med Res Opin 2009; 25(3): 569–583.

44. Yang TY, Liaw YP, Huang JY et al. Association of Sitagliptin with cardiovascular outcome in diabetic patients: a nationwide cohort study. Acta Diabetol 2016; 53(3): 461–468.

45. Yang W, Cai X, Han X et al. DPP-4 inhibitors and risk of infections: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 2016; 32(4): 391–404.

46. Zunz E, La Barre J. Contributions à l´étude des variations physiologiques de la secretion interne du pancreas: relations entre les secretions externe et interne du pancreas. Arch Int Physiol Biochim 1929; 31: 20–24.

47. Moore B, Edie ES, Abram JH. On the treatment of Diabetus mellitus by acid extract of Duodenal Mucous Membrane. Biochem J 1906; 1(1): 28–38.

Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#