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Exozomy představují nejmenší subtyp EV (velikost 
30–100 nm). Vzhledem ke své velikosti tyto váčky mo-
hou snáze prostupovat mezi buňkami tvořící přirozené 
bariéry, a uvolňovat se tak do systémové cirkulace, což 
je důvod největšího zájmu probíhajících studií. Vznika-
jí endocytózou cytoplazmatické membrány za vzniku 
časného endozomu, ten prochází vnitřním pučením 
membrány generující pozdní endozom, který obsahu-
je intraluminální váčky (budoucí exozomy). Fúzí pozd-
ního endozomu s  cytoplazmatickou membránou se 
uvolňují do extracelulárního prostředí exozomy [3, 4]. 
Dosud není vyřešena otázka selektivního zabudování 

ÚVOD DO NOMENKLATURY 
A KLASIFIKACE VEZIKUL

Extracelulární vezikuly (EV) představují heterogenní 
skupinu sekrečních vezikul tvořených lipidovou dvou-
vrstvou, které nejsou schopny replikace a  neobsahují 
buněčné jádro. Vzhledem k progresivně probíhajícímu 
výzkumu dosud není v  literatuře ustálena jejich jed-
notná klasifikace [1]. Nejstarší a stále používané dělení 
respektující biogenezi vezikul zahrnuje exozomy, ekto-
zomy, apoptoická tělíska a jiné vezikuly [2]. Jejich vznik 
je ilustrován na obrázku 1.
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obsahu a tvorby membrány vezikul, neboť se drama-
ticky odlišují od cytosolu a cytoplazmatické membrá-
ny zdrojové buňky [5]. V roce 2007 bylo prokázáno, že 
exozomy mohou obsahovat kódující mRNA, ale i  sig-
nální mikroRNA, aktivní v recipientní buňce. Tato sku-
tečnost posunula vnímání EV z okrajového tématu do 
centra zájmů [2, 6].

Ektozomy se označují také jako mikrovezikuly či mi-
kropartikule. Jsou zpravidla větší než exozomy (100 až 
1000 nm). Vznikají přímým pučením cytoplazmatické 
membrány do extracelulárního prostoru. Jejich povr-
chové znaky do značné míry závisí na složení původní 
cytoplazmatické membrány buňky, ze které pochází [3, 
5, 7]. Při biogenezi ektozomů také dochází k selektivní-
mu začlenění neseného nákladu [5].

Apoptoická tělíska jsou největší subfrakcí EV (100 
až 5000 nm). Vznikají při apoptóze fragmentací buň-
ky a  to je důvodem jejich výrazné variability velikosti 
i  obsahu [8]. Předpokládaným hlavním cílem tvorby 
apoptoických tělísek je buněčná clearance pomocí fa-
gocytujících buněk za absence zánětlivé reakce. Podle 
novějších prací jsou však navíc zapojeny do mezibu-
něčné komunikace zejména regulací imunitní odpo-
vědi ve smyslu aktivace nebo suprese [9]. Pro úplnost 
je vhodné zmínit, že apoptoické buňky dokonce tvoří 
více EV než buňky zdravé a jsou schopny tvořit ostatní 
typy EV (ektozomy i exozomy – označované souhrnně 
apoEV), což reflektuje jejich roli v mezibuněčné komu-
nikaci [10].

Mimo základní tři typy EV jsou mnohými autory dále 
vyčleňovány vezikuly odkazující na jejich buněčnou 
funkci, izolační techniky nebo velikost. Jedná se na-
příklad o  onkozomy, nanovezikuly, migrazomy a  jiné. 

Jejich definice si často napříč různými pracemi proti-
řečí, mnohdy se liší i základní údaj o jejich velikosti [1, 
11]. Úskalí této klasifikace tkví v  různorodém buněč-
ném původu vezikul, heterogenitě transportovaného 
obsahu i  povrchových struktur, absenci univerzálního 
povrchového znaku pro detekci a rozlišení jednotlivých 
druhů EV a  jejich odlišení od podobných částic (lipo-
proteiny, exomery). Problematické je také to, že stejná 
buňka může produkovat několik druhů vezikul [11]. Vý-
chodiskem z této problematiky měla být nová klasifika-
ce vydaná International Society for Extracellular Vesic-
les v roce 2018 [1]. Je v ní doporučeno používat obecný 
termín extracelulární vezikula a zdržet se historických 
termínů odkazujících na biogenezi. Jednoznačně je 
preferované členění podle měřitelných veličin (velikost, 
denzita, biochemické složení neseného obsahu, povr-
chové znaky a  buněčný původ). Například dělení dle 
velikosti na velké, střední a malé EV (Small Extracellular 
Vesicles, SEV), do kterých jsou řazeny exozomy a malé 
ektozomy. Tato nová klasifikace vyvrací historické před-
stavy o jedinečné biogenezi vezikul a možnou zaměni-
telnost při měření v překryvných velikostech EV. Nová 
klasifikace však není všeobecně přijímána, což činí da-
nou problematiku nesmírně nepřehlednou [12].

Funkce a obsah vezikul
Funkce EV je do značné míry odrazem buněčného 

původu jednotlivých vezikul, který určuje nesený ob-
sah i povrchové znaky. Tyto charakteristické vlastnosti 
vezikul se mohou měnit mimo jiné při infekci, buněč-
ném stresu vyvolaném signálními molekulami či jiným 
patologickým stavem [13]. Membrána EV je složením 
odlišná od zdrojové buňky (má mimo jiné vyšší obsah 
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Obr. 1. Extracelulární vezikuly – biogeneze a jejich role v mezibuněčné komunikaci 
Figure 1. Extracellular vesicles – biogenesis and their role in intercellular communication
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lipidů) a na svém povrchu nese adhezní molekuly (např. 
integriny, selektiny) a specifické proteiny dle zdrojové 
buňky, které fungují jako receptory, koreceptory nebo 
ligandy (např. hlavní histokompatibilní komplex 1 a 2, 
receptor T buněk). Výsledná konformace membrány 
určuje, zda dochází k  aktivaci signální dráhy interakcí 
ligand-receptor na povrchu cílové buňky nebo k inter-
nalizaci vezikuly s uvolněním obsahu do cytosolu – ob-
rázek 1 [3, 4, 6]. V některých pracích bylo popsáno také 
splynutí vezikuly s  lysozomem s následnou degradací 
obsahu. Dosud není prokázán určující mechanismus 
rozhodující o  degradaci či uvolnění obsahu do cyto-
solu [14]. Vezikulární lumen může obsahovat zejména 
nukleové kyseliny (DNA, mRNA, mikroRNA a  ostatní 
nekódující RNA) [6], proteiny, lipidy a komplexnější bio-
molekuly – enzymy a cytokiny [3, 14, 15]. Tímto způso-
bem přenesené biomolekuly mohou v recipientní buň-
ce aktivovat nebo inhibovat řadu signálních drah, či 
dokonce částečně změnit buněčný fenotyp [13, 16]. EV 
tak mohou zprostředkovat autokrinní, parakrinní, en-
dokrinní i juxtakrinní mezibuněčnou komunikaci [23]. 

Regulace imunitní odpovědi
V  rámci imunitního systému je popsána role EV na 

mnoha úrovních. Dobře je prozkoumán přenos cytoki-
nů, které jsou EV schopny nést buď na svém povrchu 
(např. TNFα,TGFβ), nebo jako vnitřní náklad chráněný 
před degradací v  extracelulárním prostředí [14]. Dále 
mohou transportovat lipidové mediátory odvozené 
od kyseliny arachidonové a enzymy zapojené do jejich 
tvorby, a tím přispívat k modulaci zánětlivé reakce [16, 
17]. Takto je zajištěna dostatečná koncentrace imuno-
modulačních faktorů bez ohledu na vzdálenost, což je 
podkladem charakteristické kooperace buněk imunit-
ního systému označované jako orchestrace [18, 19].

Na úrovni vrozené imunity jsou EV významné jako 
spouštěč zánětlivé reakce pomocí přenosu signálů 
exogenního poškození (Pathogen Associated Molecu-
lar Patterns, PAMPs) a signálů endogenního poškození 
(Damage Associated Molecular Patterns, DAMPs). Zdro-
je PAMPs jsou patogeny přímo produkující EV (bakterie, 
protozoa) nebo infikované buňky inkorporující do EV 
cizorodé struktury [20, 21]. Tvorba DAMPs je spojena ze-
jména s  oxidačním stresem, mitochondriální toxicitou 
nebo se zánikem buněk [22]. V obou případech dochází 
k aktivaci buněk nespecifické imunity. V rámci adaptivní 
imunity je důležité postavení vezikul v  aktivaci T lym-
focytů pomocí antigen prezentujících buněk [23]. Bylo 
prokázáno, že EV pocházející z  dendritických buněk 
mohou nést hlavní histokompatibilní komplex i  kosti-
mulační molekuly a  také ovlivňují funkční polarizaci T 
buněk [23, 24, 25]. Konkrétní imunoregulační funkce EV 
jsou odvozeny od nesených molekul. Byly popsány EV 
nesoucí ligand indukující apoptózu FasL (FAS Ligand) 
a dále PDL1 (Programmed Cell Death Ligand 1) a CTLA4 
(Cytotoxic T-lymphocyte Associated Antigen 4), které 
slouží k regulaci imunitní reakce [26, 27].

EV hrají významnou úlohu v regulaci imunitního sys-
tému, která probíhá na mnoha úrovních a  doplňuje 
výraznou komplexnost dosud známých imunoregu-
lačních mechanismů. Svým působením potvrzují další 
charakteristiku imunitního systému, kterou je redun-
dance. EV mohou působit prozánětlivě i protizánětlivě, 
a tím vytváří dynamickou rovnováhu nutnou k zacho-
vání homeostázy [23, 28, 29]. Vychýlení této rovnová-
hy je podkladem mnoha patologických stavů, např. 
autoimunitních [30], nádorových [31] a kardiovaskulár-
ních onemocnění [29].

EV a infekční agens
Cílem následujícího textu není přinést úplný seznam 

patogenů a  jejich popsaného vztahu k  EV, ale spíše 
obecné principy, které povedou k  pochopení kom-
plexity dané problematiky. V jedné rovině je možné po-
zorovat interakci přirozeného systému extracelulárních 
vezikul hostitele a  samotného patogenu, kdy působí 
protektivní funkcí ve smyslu aktivace imunitní odpově-
di. Naopak ale mohu sloužit také při diseminaci infekce 
z pozice transportních váčků mezi buňkami. V další ro-
vině jsou buněčné patogeny schopné rovněž produko-
vat své EV, které mohou narušovat funkci imunitního 
systému a mimo jiné sloužit jako transportéry faktorů 
virulence [21, 28]. Interakci mikrobiálních a  endogen-
ních EV ilustruje obrázek 2.

Viry
Viry dokáží využít hostitelského transportního sys-

tému EV několika mechanismy. Viriony mohou být 
inkorporovány do EV hostitelské buňky a  posléze 
transportovány do jiných buněk. Tento mechanismus 
je popsán zejména u malých EV (SEV), neboť syntéza 
virové kapsidy a exozomů sdílí stejné buněčné mecha-
nismy [32]. Tato „infikovaná“ vezikula chrání viriony 
před rozpoznáním imunitním systémem a podílí se na 
šíření viru do dalších cílových buněk. Jde o hypotézu 
trojského koně, formulovanou již roku 2003, která pre-
dikovala tento mechanismus u  retrovirů [33]. Dosud 
byl popsán například u viru hepatitidy C [34], viru he-
patitidy A [35], viru hepatitidy E [36], viru herpes sim-
plex [37] a lidského viru imunodeficience (Human Im-
munodeficiency Virus, HIV) [38]. EV mohou nést také 
nekompletní virové struktury. Tento mechanismus je 
nejlépe prozkoumán u  HIV. Recentně byly popsány 
EV vznikající z buněk infikovaných HIV, které nesou na 
svém povrchu virový glykoprotein gp120 [39] a  dále 
vezikuly s  obsahem TAR RNA (Trans-Activation Re-
sponse element) nebo genů gag a  nef. Tyto vezikuly 
pak mohou být derivovány z  rezervoárů infekce přes 
přirozené bariéry a  aktivovat imunitní buňky. Tímto 
mechanismem je z části vysvětlen fenomén chronické 
imunitní aktivace navzdory nedetekovatelné RNA HIV 
v plazmě u lidí žijících s HIV [40]. Na druhou stranu EV 
mohou v okolních buňkách blokovat virovou replikaci 
spuštěním mechanismů přirozené protivirové imunit-
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ní reakce tvorbou interferonů [41] či tvorbu endogen-
ního oxidu dusnatého [42]. Dalším mechanismem je 
tvorba EV nesoucích vazebné receptory, na které se 
váží viry. Představují tak analogii neutralizačních pro-
tilátek. U  HIV byl popsán mechanismus tvorby vezi-
kul z CD4+ buněk, které mohou obalovat viriony HIV 
interakcí s gp120, a tím blokovat vazbu viru s cílovou 
buňkou [43]. Obdobný mechanismus byl popsán u pa-
cientů s  infekcí virem SARS-CoV-2, u kterých byly de-
tekovány zvýšené hodnoty EV nesoucích angiotensin 
konvertující enzym typu 2 [44].

Bakterie
Většina bakterií je schopna produkovat EV, které se 

někdy souhrnně označují jako bakteriální extrace-
lulární vezikuly (BEV). Jde o heterogenní skupinu EV 
lišící se strukturou i obsahem v závislosti na bakteriál-
ním druhu, biogenezi a stresových faktorech prostředí 
(např. expozice antibiotikům). BEV mají rozměry v prů-
měru od 40 do 400 nm. Podobně jako u eukaryotních 
EV, byly BEV prvotně vnímány jako nepotřebné bu-
něčné remnanty. Intenzivní výzkum a průkaz transferu 
biomolekul poukázal na zásadní roli v buněčné funkci 
a interakci na mnoha úrovních (bakterie-bakterie, bak-
terie-hostitel) [45]. U  gramnegativních bakterií jsou 
BEV generovány procesem vezikulace (pučením) zevní 
membrány a buněčnou lýzou. Pučením zevní membrá-
ny vznikají vezikuly zevní membrány (Outer Membrane 

Vesicles, OMV), které jsou znázorněny na obrázku 2. 
Vnitřní (cytoplazmatická) membrána zůstává intaktní, 
vezikulu tak tvoří obsah periplazmatického prostoru 
a struktury zevní membrány. Mnoho studií v nich pro-
kázalo nukleové kyseliny, cytosolové proteiny a  také 
schopnost transportovat faktory virulence a rezistence 
k antibiotikům. Selektivita neseného obsahu dokazuje, 
že jde o  dosud neznámým způsobem řízený proces. 
Druhým mechanismem u gramnegativních bakterií je 
explozivní buněčná lýza, při které dochází k endolysi-
nem indukovanému štěpení peptidoglykanu buněčné 
stěny. Tímto mechanismem vznikají OIMV (Outer-Inner 
Membrane Vesicles) a  EOMV (Explosive Outer Mem-
brane Vesicles). Vzhledem k  charakteristické bioge-
nezi se předpokládá náhodné začlenění bakteriálních 
struktur včetně cytoplazmatických a  membránových 
složek [46]. Dle některých prací však OIMV mohou vzni-
kat činností autolysinů při absenci buněčné lýzy [47]. 
Také grampozitivní bakterie jsou schopné produkovat 
BEV. Díky absenci zevní membrány se označují jako cy-
toplazmatické membránové vezikuly (Cytoplasmic 
Membrane Vesicles, CMV). CMV vznikají procesem bu-
něčné lýzy i vezikulací [48].

BEV slouží jako transportéry signálních molekul 
a také živin, čímž se podílí na tvorbě a stabilizaci biofil-
mu. Jejich funkce je odrazem neseného obsahu. Mo-
hou obsahovat chromozomální i  plazmidovou DNA, 
a podílet se tak na horizontálním přenosu genů (např. 

Mikrobiální EV

OM PP IM

Extracelulární
prostor

Endogenní EV

Krevní elementy Tkáňově specifické buňky 

OMV

Obr. 2. Schematické zobrazení původu endogenních a mikrobiálních EV
Figure 2. Schematic representation of the origin of endogenous and microbial EVs
OMV – vezikuly zevní membrány, OM – zevní membrána, PP – periplazmatický prostor, IM – vnitřní membrána
OMV – outer membrane vesicles, OM – outer membrane, PP – periplasmic space, IM – inner membrane)
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genů podmiňujících faktory virulence nebo antimikro-
biální rezistence) [47, 49]. V  bakteriální populaci mo-
hou BEV přenášet také enzymy inaktivující antibiotika. 
Vzhledem k  podobnosti BEV s  bakteriální stěnou do-
chází k  vychytávání molekuly antibiotika v  extracelu-
lárním prostoru, čímž snižují jeho efektivní koncentraci 
[50]. BEV mohou interagovat nejenom s bakteriemi ji-
ného druhu, ale překvapivě i s eukaryotními buňkami. 
Zde je nejpodstatnější přenos faktorů virulence, který 
je prokázán u celé řady patogenů (např. Escherichia coli, 
Shigella spp., Pseudomonas spp.). Takto membránou 
obalené faktory virulence jsou chráněné před účinky 
degradačních enzymů a protilátek a mohou být nepo-
rušené internalizovány hostitelskou buňkou [49]. Další 
interakce BEV a  eukaryotní buňky je podmíněna akti-
vací přirozené imunity rozpoznáním PAMPs na povrchu 
vezikul [23, 49]. V  současnosti je přikládána velká po-
zornost detekci vysokých hodnot BEV v systémové cir-
kulaci člověka u onemocnění asociovaných s poruchou 
střevní bariéry (infekce HIV, idiopatické střevní záněty, 
nádorová onemocnění) [51]. Recentně publikované 
práce také poukazují na prostup BEV (derivovaných ze 
střeva) přes hematoencefalickou bariéru se vznikem lo-
kální zánětlivé reakce [52]. O významu BEV v systémo-
vé cirkulaci zatím můžeme pouze spekulovat. Jsou však 
důkazem komplexity interakce mikrobioty a  hostitele 
za fyziologických i patologických stavů [49, 51].

Parazitární původci
Problematika EV u  parazitů je velmi málo prozkou-

mána. Jedná se o nesourodou skupinu zahrnující jed-
nobuněčné i  mnohobuněčné organismy s  odlišnými 
fyziologickými procesy. Vzhledem k  zaměření celé 
práce jsou dále diskutováni pouze původci lidských 
parazitárních onemocnění. Parazitární EV mohou 
modulovat imunitní odpověď hostitele inhibicí tvorby 
prozánětlivých cytokinů regulací genové transkripce. 
Tato strategie umožňuje únik před imunitním systé-
mem hostitele. Byla popsána například u  Leishmania 
spp. a  Plasmodium spp. [53]. U  příslušníků rodu Schis-
tosoma byly popsány EV, které tlumí funkci Th2 lym-
focytů [54]. Odlišným mechanismem studovaným na-
příklad u Echinococcus spp. [55], Heligmosomoides spp. 
[56] a  Toxoplasma gondi [57] je tvorba EV s  obsahem 
nekódujících mikroRNA podobných s hostitelskými mi-
kroRNA se známou imunoregulační funkcí. Na druhou 
stranu EV mohou indukovat tvorbu prozánětlivých cy-
tokinů (Plasmodium spp. a  Trypanosoma spp.) [53,58]. 
Duální modulace imunitní odpovědi je odrazem složi-
tosti interakce parazita a hostitele. Dále mohou EV nést 
faktory virulence, které usnadňují následnou invazi 
patogenu [58]. EV produkované Trichomonas vaginalis 
tak např. usnadňují adherenci k  epiteliálním buňkám 
urotraktu [59]. EV transferují také diferenciační faktory. 
Tento jev byl studován u Plasmodim falciparum, kdy EV 
uvolněné z infikovaného erytrocytu spustili gametoge-
nezi, což je klíčový proces pro přenos plazmodií komá-

řím vektorem [60]. Nedávno byl popsán přenos genů 
rezistence k antiprotozoálním molekulám mezi přísluš-
níky rodu Leishmania spp. pomocí EV [61]. Studium EV 
může přinést cenné informace k bližšímu prozkoumání 
složité patogeneze parazitárních onemocnění s  mož-
ností tvorby nových terapeutických strategií.

Extracelulární vezikuly jako nové biomarkery
Většina lidských buněk je schopna produkovat EV, 

což je předpokladem jejich výskytu ve všech těles-
ných kompartmentech. Dosud byly EV detekovány 
v krvi, moči, slinách, mozkomíšním moku, mateřském 
mléce i  synoviální tekutině [62]. EV představují jeden 
ze základních pilířů mezibuněčné komunikace, čímž 
přispívají k  udržení homeostázy. Výsledný účinek je 
podmíněn intravezikulárním nákladem a také povrcho-
vými strukturami na membráně vezikuly. Jejich tvorba 
a nesený náklad může být alterován za patologických 
stavů, kde byly popsány četné kvantitativní i kvalitativ-
ní rozdíly ve složení EV. Vzhledem k  tomu, že EV jsou 
specifické buněčným původem a  signálními dráhami, 
které vedly k  jejich uvolnění, stávají se velmi slibným 
nástrojem k bližšímu pochopení složitých patofyziolo-
gických procesů a také diagnostickým nástrojem stavů, 
které k této alteraci vedli [13].

Nejlépe je popsán výskyt EV v krvi, kde jsou nejhoj-
něji zastoupeny EV pocházející z trombocytů, erytrocy-
tů a endoteliálních buněk. Průlomové zjištění přinesla 
detekce orgánově specifických EV, které díky svému 
nesenému obsahu umožňují odhadnout funkční stav 
buněk, ze kterých pochází [63]. Jde o metodu tzv. fluid-
ní biopsie, při které se analyzují například EV, volné cir-
kulující nukleové kyseliny a  tkáňově specifické buňky 
v  periferní krvi [64]. Svým potenciálem neinvazivního 
biomarkeru má fluidní biopsie velký přesah mimo dia-
gnostiku patogenních infekcí, a to zejména v diagnos-
tice nádorových [65] a neurodegenerativních onemoc-
nění [66].

Detekce patogen specifických EV představuje velmi 
perspektivní možnost diagnostiky některých infekčních 
onemocnění. Obecně jsou zde aplikovány dva principy. 
Jednou možností je stanovení extracelulárních vezi-
kul derivovaných patogenem s  obsahem specifických 
proteinů a nukleových kyselin (např. mikroRNA). Tento 
způsob detekce je nejlépe prozkoumán u parazitárních 
onemocnění například u  infekcí vyvolanými helminty 
[67], echinokoky [68] a  schistozomami [69]. Druhou 
možností je stanovení extracelulárních vezikul hostite-
le obsahující patogenní komponenty, což je výhodné 
a slibné pro diagnostiku intracelulárních patogenů, jak 
dokazuje recentní studie popisující diagnostiku plic-
ní i  mimoplicní tuberkulózy detekcí EV z  makrofágů 
nesoucí faktory virulence Mycobacterium tuberculosis 
v séru [70]. 

V  současnosti výrazně vzrůstá zájem o  studium EV 
a  jejich role jako biomarkerů při detekci infekčních 
i neinfekčních onemocnění. Jejich široké přijetí do kli-
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nické praxe však omezuje mnoho faktorů. Stěžejní je 
absence standardizovaných metod izolace a  detekce 
EV z tělních tekutin. Viriony a lipoproteiny mohou mít 
podobné biofyzikální i molekulární charakteristiky jako 
EV detekované v plazmě [71]. Podobně je nutné odliše-
ní EV od recentně popsaných exomer a supermer, sou-
hrnně označovaných jako nanočástice nebo non-EV 
[1, 72]. Dále také není vyřešena otázka intraindividuální 
a interindividuální variability [73].

Potenciální terapeutika nové generace
Extracelulární vezikuly jsou díky své přirozené funkci 

transportních váčků perspektivní terapeutickou mo-
dalitou. Předpokládá se využití EV jako platforem pro 
dodání terapeutik se zacílením na konkrétní buněčné 
populace [74]. Další slibnou možností je ovlivnění bio-
geneze endogenního systému EV ve smyslu inhibice/
stimulace tvorby a také inhibice příjmu EV recipientní 
buňkou [75]. Inhibice tvorby mikrobiálních EV předsta-
vuje novou možnost antimikrobiální terapie [76]. Jako 
samostatná terapeutika jsou studovány EV derivované 
z  mezenchymálních kmenových buněk [77]. Intenziv-
ně je zkoumána možnost využití bakteriálních extrace-
lulárních vezikul jako nové vakcinační platformy. Toto 
využití je výhodné pro nízkou výrobní cenu, přítom-
nost několika imunogenních povrchových antigenů 
a  také nemožnost samostatné replikace vezikul [75, 
78]. V současnosti jsou používány vakcíny proti Neisse-
ria meningitidis skupiny B založené na vezikulách zevní 
membrány (OMV) [79].

Navzdory nadějným terapeutickým možnostem 
musí být překonána četná omezení. Je třeba dalších 
studií, které osvětlí dosud neznámá místa ve fyziologii 
a patofyziologii endogenních i exogenních vezikul, což 
umožní vytyčit nové farmakoterapeutické cíle. Velkou 
výzvu představuje výběr buněčných kultur umožňující 
dostatečnou produkci pro klinické využití [75, 80].

ZÁVĚR

Intenzivní výzkum výraznou měrou přispěl k  lepší-
mu pochopení významu a  funkce EV. Jde o  nesmírně 
komplexní problematiku, danou heterogenitou nese-
ného obsahu i strukturou měnící se napříč buněčnými 
organismy. Definování obsahu extracelulárních vezikul 
v kontextu jak endogenních (hostitelských), tak i exo-
genních (mikrobiálních) složek a jejich změny v průbě-
hu infekce je zásadní pro lepší pochopení modulace 
imunitních reakcí a  mechanismů patogenity. Zůstává 
zde však mnoho otázek a proměnných, zasahujících od 
samotné biogeneze a transferu biomolekul až po ana-
lytické a produkční záměry. Progresivní výzkum v této 
oblasti může vést k lepšímu pochopení duální role EV 
v procesech fyziologických i patofyziologických a vést 
k  vývoji nových biomarkerů a  farmakoterapeutických 
cílů.
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