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nových vektorů z  jižních oblastí) či socioekonomic-
kých (pobyt lidí v přírodě, suburbanizace či reforesta-
ce krajiny) [1–3].

Mezi nedávno popsané patogeny přenášené klíšťa-
ty náleží i Borrelia miyamotoi (dále jen B. miyamotoi), 
která byla objevena v klíštěti Ixodes persulcatus v roce 
1995 v Japonsku [4], posléze detekována v roce 2001 
v USA a o rok později i v Evropě (Švédsko) [5, 6]. První 
případy onemocnění B. miyamotoi u člověka byly po-
psány v ruském Jekatěrinburgu při testování souboru 
302 pacientů s podezřením na Lymeskou borreliózu. 
U 46 z nich potvrdili infekci B. miyamotoi. Kritéria za-
hrnovala potvrzené sání klíštětem, příznaky podobné 
lymeské borrelióze (horečka, únava a  bolest svalů), 
detekci B. miyamotoi v krvi pomocí PCR (gen pro 16S 
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Nemoci přenášené klíšťaty představují významné ri-
ziko pro veřejné zdraví. Spektrum těchto onemocnění 
v  našem regionu je velmi široké – od virových (klíš-
ťová encefalitida), přes početné bakteriální (Lymeská 
borrelióza, lidská granulocytární anaplazmóza, tularé-
mie) až po nákazy protozoární (babezióza). Mnohdy 
se jedná o  tzv. emergentní nákazy, jež byly popsány 
v posledních dekádách a z pohledu epidemiologické-
ho jde vesměs o  opomíjená či podhlášená onemoc-
nění. Podle některých studií se riziko výskytu těchto 
nákaz zvyšuje se změnami environmentálními (např. 
klimatu – zvýšená aktivita klíšťat, posun klíštěcích 
vektorů do severních zeměpisných šířek, introdukce 
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Přehledová práce přináší současné poznatky o  taxonomii, ekologii vektorů a  rezervoárových hostitelů, geografickém rozšíření, 
diagnostice a léčbě onemocnění způsobené spirochetou B. miyamotoi. Práce současně zdůrazňuje potřebu správné etiologie one-
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Borrelia miyamotoi is an emerging tick-borne pathogen phylogenetically belonging to spirochaetes causing relapsing fever. It is 
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rRNA) a  detekci specifického anti-borreliálního IgM. 
Pacienti infikovaní B. miyamotoi vykazovali známky 
akutního horečnatého onemocnění, které mělo po-
malejší nástup než lymeská borrelióza. Laboratorní 
nálezy také ukázaly změny krevního obrazu a  jater-
ních testů (leukopenie, trombocytopenie, zvýšené 
hodnoty ALT a AST). U 4 pacientů byla zaznamenána 
erythema migrans (EM), ale koinfekce s  B. burgdorferi 
s. l nebyla potvrzena. Celkem 5 pacientů zaznamena-
lo relaps horečky, typický pro onemocnění návratnou 
horečkou. Pacienti byli léčení ceftriaxonem intra-
venózně nebo doxycyklinem perorálně. U 7 pacientů 
byla zaznamenána Jarisch-Herxheimerova reakce po 
podání ATB [7].

Dosud byly kromě Ruska popsány případy onemoc-
nění u člověka v USA, Kanadě, Japonsku, Číně, Nizoze-
mí či Německu včetně komplikovaných případů menin-
goencefalitidy u  imunokompromitovaných pacientů 
[8–15]. Nově byl zaznamenán i případ u pacienta v Ra-
kousku [16].

Spirocheta B. miyamotoi náleží v rámci rodu Borrelia 
mezi skupinu borrelií způsobujících návratnou horeč-
ku. Zatímco většina medicínsky významných zástupců 
(např. B. duttoni, B. hermsii či B. hispanica) je přenášena 
výhradně klíšťáky čeledi Argasidae (rody Argas a  Or-
nithodoros), B. miyamotoi je přenášená klíšťaty rodu 
Ixodes [4, 17–20].

Cílem souhrnné práce bylo podat ucelený obraz 
spirochety B. miyamotoi – popsat přenašeče (vektory), 
rezervoáry, hostitele, geografické rozšíření, ale také 
klinické charakteristiky onemocnění způsobené tímto 
patogenem a možnost jeho diagnostiky a léčby. Důraz 
byl kladen i  na výskyt agens v  České republice a  rizi-
ko nákazy B. miyamotoi včetně nástinu preventivních 
opatření a surveillance.

FYLOGENETICKÉ POSTAVENÍ B. MIYAMOTOI

B. miyamotoi náleží do rodu Borrelia, čeledi Borrelia-
ceae a kmene Spirochaetes. Rod Borrelia je podle sou-
časné klasifikace členěn na 3 skupiny – tzv. ‚RF borrelie‘ 
(‚relapsing fever borreliae‘), ‚LD borrelie‘ (‚Lyme disease 
borreliae‘) a také na nově objevené ‚REP borrelie‘ (‚repti-
le-associated borrreliae‘), přičemž se spekuluje i o čtvr-
té skupině tzv. ‚echidna-associated borrelií (izolovány 
z klíšťat Bothriocroton concolor sajících na australských 
ježurách). Spirocheta B. miyamotoi je řazena mezi ‚RF 
borrelie‘, a  současně tvoří skupinu s  ostatními ‚RF bo-
rreliemi‘, které jsou přenášeny klíšťaty čeledi Ixodidae 
– tj. B. lonestari přenášená Amblyomma americanum 
a B. theileri, jejímž vektorem je Rhipicephalus microplus 
[4, 17, 21–24]. V současné době se živě spekuluje o pro-
blematice diverzity v  rámci rodu Borrelia. V  roce 2014 
byl rod validně rozdělen na dva samostatné – na rod 
Borrelia, kam náleží ‚RF borrelie‘ a na rod Borreliella, kam 
byly přeřazeny ‚LD borrelie‘ [25, 26, 27]. Proti tomu se 

však ohradila celá řada vědců působících ve výzkumu 
borrelií a spekuluje se o tom, zda toto rozdělení je ade-
kvátní a dostatečně postihuje rozmanitost rodu Borrelia 
[28–31]. V březnu roku 2020 bylo navrženo toto rozdě-
lení zrušit, protože panují obavy, že nové pojmenování 
Borreliella může způsobit diagnostickou nejistotu pře-
devším v  lékařských kruzích. Název Borreliella má tak 
aktuálně status synonyma [32]. V rámci vnitrodruhové 
rozmanitosti rozlišujeme u B. miyamotoi tři geograficky 
odlišitelné genotypy – asijský genotyp (B.  miyamotoi 
sensu stricto), nejčastěji přenášený I. persulcatus, dále 
evropský genotyp, typicky přenášený I. ricinus, a nako-
nec genotyp americký, přenášený nejčastěji I. scapula-
ris a I. pacificus. Zvažuje se i zařazení dalšího genotypu 
přenášeného klíštětem I. ovatus v Japonsku [18, 19, 33, 
34, 35, 38].

PŘENAŠEČI (VEKTORY) B. MIYAMOTOI

Jedná se o  zatím jediné agens skupiny návratných 
horeček, které je přenášeno klíšťaty rodu Ixodes (tab. 1) 
[36, 37]. V Evropě a části Asie je hlavním vektorem Ixo-
des ricinus, v Asii jsou vektory I. persulcatus (v pásu za-
hrnujícím Baltské země až po Dálný východ), I. ovatus 

SOUHRNNÉ SDĚLENÍ

Tabulka 1. Přehled druhů klíšťat, ve kterých byla B. miyamotoi 
dosud detekována 
Table 1. Detections of B. miyamotoi in ixodid ticks 

Rod klíštěte Druh 
klíštěte Rok/stát Reference

Ixodes persulcatus 1995/
Japonsko

[4]

scapularis 2001/USA [5]

pacificus 2006/USA [38]

ricinus 2002/
Švédsko

[6]

hexagonus 2017/Belgie [39]

ovatus 2014/
Japonsko

[33]

pavlovskyi 2014/
Japonsko

[33]

nipponensis 2019/Jižní 
Korea

[40]

dentatus 2012/USA [41]

inopinatus 2019/
Německo

[42]

Dermacentor reticulatus 2018/Rusko [44]

Haemaphysalis concinna 2018/Čína [12]

longicornis 2018/Čína [45]

punctata 2019/Francie [43]

inermis 2020/
Slovensko

[48]

Poznámka: Jsou uvedeny vždy první záchyty v daném druhu klíštěte.
Remark: Only first findings are recorded in particular tick species.
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Druhým mechanismem napomáhajícím přenosu 
a  udržovaní B. miyamotoi ve vektorech a  hostitelích 
je TSP. Scoles et al. [5] poprvé experimentálně doku-
mentovali kompletní TSP (do dospělců byla B. miya-
motoi přenesena z 61 % nymf ). Lynn et al. [55] ve své 
práci uvádějí, že pouze 1 ze 4 nymf, které se vyvinuly 
z  nakažených larev, zůstala infikována B. miyamotoi. 
Ačkoliv TOP ani TSP neprobíhají s  maximální účin-
ností, přesto představují významný nástroj pro šíře-
ní B. miyamotoi, především TOP je efektivní strategií 
pro udržování stabilní prevalence i  bez dostupnosti 
nakažených hostitelů, tj. klíště se stává i rezervoárem 
infekce [50, 55].

HOSTITELÉ A REZERVOÁRY B. MIYAMOTOI

B. miyamotoi byla dosud nalezena v  široké škále 
obratlovců (tab. 2). Jedná se především o drobné sav-
ce, zejména hlodavce, ale také ptáky, což korespon-
duje s vývojovými cykly klíštěte komplexu I. ricinus. 
Zajímavá je i  detekce B. miyamotoi v  krvi divokých 
krocanů (Meleagris gallopavo) v USA, kde byla zjiště-
na 58% prevalence, což je vůbec nejvyšší prevalence 
B. miyamotoi v  jakékoliv populaci volně žijících ob-
ratlovců [62].

(jihovýchodní Asie), I. pavlovskyi (v pásu zahrnující zá-
padní Sibiř až po Dálný východ) a  v  Severní Americe 
I. scapularis (středovýchodní a středozápadní část USA), 
I. pacificus (západní pobřeží USA) a I. dentatus (východní 
část USA) [20]. V posledních letech však přibývají i nále-
zy u dalších zástupců čeledi Ixodidae – klíšťat rodu Der-
macentor a Haemaphysalis. Jedná se ovšem o ojedinělé 
nálezy a dosud není jasné, zda jsou tyto druhy klíšťat 
kompetentním vektorem pro B. miyamotoi [12, 43–48]. 
Charakteristickou vlastností B. miyamotoi je schopnost 
jak transovariálního přenosu (TOP), tak i transstadiální-
ho přenosu (TSP). TOP u  B. miyamotoi poprvé popsali 
Scoles et al. v roce 2001, kdy 2 z 52 infikovaných sami-
ček přeneslo B. miyamotoi na potomstvo, přičemž míra 
filiální infekce (podíl infikovaného potomstva) byl velmi 
variabilní: 6–73 %. Podobná variabilita byla dokumen-
tována i v dalších pracech (Han et al. 2019 – podíl infi-
kovaného potomstva byl 36–100 %) [5, 49, 50]. Schop-
nost TOP také odlišuje B. miyamotoi od B. burgdorferi 
s. l., u  které TOP nebyl dosud jednoznačně prokázán. 
Některé starší práce dokumentují výskyt B. burgdorferi 
u larev, avšak metody, které byly použity (fluorescenční 
mikroskopie s  využitím polyklonálního séra) vykazují 
zkřížené reakce s  B. miyamotoi. Druhým možným vy-
světlením je fakt, že larvy, ve kterých byla detekována 
B. burgdorferi, byly již částečně nasáté [50–54].

SOUHRNNÉ SDĚLENÍ

Tabulka 2. Přehled obratlovců, ve kterých byla B. miyamotoi dosud detekována
Table 2. Detections of B. miyamotoi in vertebrate hosts

Živočich Typ vzorku Rok/stát Reference

Apodemus argenteus krev 1995/Japonsko [4]

Peromyscus leucopus krev 2005/USA [56]

Peromyscus leucopus krev, biopsie kůže 2009/USA [57]

Apodemus argenteus
Apodemus speciosus
Myodes rufocanus
Myodes rutilus

krev, močový měchýř 2013/Japonsko [58]

Apodemus sylvaticus
Microtus arvalis
Myodes glareolus
Carduelis chloris
Parus major

slezina 2017/Nizozemí [59]

Myodes glareolus slezina 2014/Francie [60]

Apodemus flavicollis
Myodes glareolus

biopsie kůže 2017/Slovensko [61]

Meleagris gallopavo krev, biopsie kůže a svalů 2010/USA [62]

Neotoma fuscipes
Peromyscus boylii
Peromyscus californicus

krev, biopsie kůže 2018/USA [63]

Sciurus vulgaris slezina 2019/Maďarsko [64]

Apodemus flavicollis
Myodes glareolus

játra 2019/Rumunsko [65]

Microtus arvalis biopsie kůže 2020/Slovensko [48]
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tory a mnohé hostitele a navíc B. miyamotoi má výho-
du TOP [36, 57, 84]. Tato nižší prevalence B. miyamotoi 
oproti B. burgdorferi s. l. bude mít patrně několik příčin. 
Jak již bylo zmíněno, B. miyamotoi ve svých hostitelích 
dlouhodobě neperzistuje a schopnost nakazit klíště je 
tedy omezena jen na fázi akutní bakterémie. Spekuluje 
se také o možném negativním vlivu spirochéty na ži-
votaschopnost klíšťat. To vše jen podtrhuje důležitost 
TOP pro cirkulaci B. miyamotoi [37, 57, 58, 61]. Skuteč-
nosti, že B. miyamotoi a B. burgdorferi nevyužívají stej-
né strategie či mechanismy přežití může napovědět 
i míra koinfekce v klíšťatech. Některé práce dokumen-
tují nižší počet koinfekcí při náhodné distribuci, jiné 
zase uvádějí statisticky významný počet koinfekcí, zů-
stává tedy otázkou, zda jsou koinfekce náhodné či ne 
[20, 59, 81, 121]. 

V případě některých drobných hlodavců byla studo-
vána jejich kompetence pro přenos B. miyamotoi, tzn. 
schopnost být patogenem nakažen, ale současně jej 
přenést na sající klíšťata. Tato vlastnost byla prokázá-
na pomocí xenodiagnostiky u myšice lesní (Apodemus 
flavicollis) a norníka rudého (Myodes glareolus) v Evro-
pě a křečíka bělonohého (Peromyscus leucopus) v USA. 
Je pravděpodobné, že kompetentní rezervoáry bude 
představovat více druhů drobných savců (viz tab. 2), 
především pak i jiné druhy rodu Apodemus a Myodes [4, 
57–61, 66]. 

B. miyamotoi byla také detekována v  klíšťatech, jež 
sála na různých druzích obratlovců (savců a  ptáků), 
může se jednat o hostitele či potenciální rezervoáry. Ze 
savců lze uvést prase divoké (Sus scrofa), srnce obecné-
ho (Capreolus capreolus) [67], jelena lesního (Cervus ela-
phus) [70], jelena běloocasého (Odocoileus virginianus) 
[68, 69], ježka západního (Erinaceus europaeus) [39] či 
domácí psy [54]. U klíšťat sňatých z ptáků potom kosa 
černého (Turdus merula) [67], dále kardinála červeného 
(Cardinalis cardinalis), drozda rezavoocasého (Catharus 
guttatus) a  drozda stěhovavého (Turdus migratorius) 
[41]. Kromě přímých průkazů byla B. miyamotoi de-
tekována také sérologicky v  jelenovi milu (Elaphurus 
davidianus) v  Číně [45]. Ačkoliv je spektrum hostitelů 
a rezervoárů B. miyamotoi podobné jako u B. burgdor-
feri s. l., ukazuje se, že tyto spirochety využívají rozdíl-
ných strategií při cirkulaci v obratlovčím hostiteli. Mezi 
nejdůležitější rozdíly patří skutečnost, že B. miyamotoi 
se vyskytuje ve vyšší denzitě v krvi obratlovce ve srov-
nání s B. burgdorferi s. l., jejíž výskyt je hojnější v kůži. B. 
miyamotoi vyskytovala v krvi až v 5krát vyšších počtech 
než v  kůži, zatímco B. burgdorferi s. l. byla 40krát hoj-
nější v kůži než v krvi hlodavců. B. burgdorferi s. l. je tak 
schopná ve svých hostitelích dlouhodobě perzistovat, 
kdežto výskyt B. miyamotoi v hostiteli je omezen jen na 
dobu akutní bakterémie [36, 57, 58].

GEOGRAFICKÉ ROZŠÍŘENÍ B. MIYAMOTOI 
A  JEJÍ VÝSKYT V  KLÍŠTĚTI V  POROVNÁNÍ 
S B. BURGDORFERI

Spirocheta byla dosud dokumentována v  mnoha 
oblastech Asie, Evropy i Severní Ameriky a a její výskyt 
je striktně vázán na oblasti výskytu vektorů – tzn. na 
oblast mírného pásma severní polokoule (výskyt v mír-
ném pásmu jižní polokoule dosud zaznamenán nebyl) 
[36, 37].

Prevalence B. miyamotoi v  klíšťatech v  jednotlivých 
zemích shrnují tabulky 3 a  4. Pro prevalenci B. miya-
motoi je typické, že je stabilně nízká v  řádu jednotek 
procent. Dosud nejvyšší prevalenci dokumentovali Rar 
et al. v roce 2019 (8,9 % v klíštěti I. persulcatus a 6,4 % 
v  klíštěti I. pavlovskyi). Prevalence B. burgorferi s. l. je 
oproti B. miyamotoi mnohdy až desetinásobná, což je 
překvapivé, uvážíme-li, že tyto dvě spirochety sdílí vek-

SOUHRNNÉ SDĚLENÍ

Tabulka 3. Prevalence B. miyamotoi v  klíšťatech v  Severní 
Americe a Asii 
Table 3. Prevalence of B. miyamotoi in ixodid ticks from North 
America and Asia 

Stát Prevalence 
(%) Vektor Reference

USA 1,05–3,0 (n) I. scapularis [5, 57, 71, 72]

0,3–3,14
(n + a)

I. scapularis [73–76]

3,0–5,7 (a) I. scapularis [77, 78]

1,4 (n) I. pacificus [79, 80]

1,0 (n + a) I. pacificus [75]

0,7–0,87 (a) I. pacificus [38, 71, 79]

0,7 (n + l) I. dentatus [41]

Kanada 0,5 (t) I. scapularis [81]

0,45 (a + n) I. scapularis [82]

Japonsko 1,6–2,0 (a) I. persulcatus [33, 35, 58]

0,1–0,5 (a) I. ovatus [33, 35]

4,3 (a) I. pavlovskyi [33]

Rusko 0,9–8,9 (t) I. persulcatus [83-85, 44]

2,9 (a) I. persulcatus [86]

6,4 (t) I. pavlovskyi [83, 84]

4,8
I. pers/I. pavl 

(hybrid)
[84]

3,1 (a + n) I. ricinus [44]

0,5 (a)
Dermacentor 

reticulatus
[44]

Čína 3,0 (a) I. persulcatus [12]

1,2
Haemaphysalis 

longicornis
[45]

Mongolsko 4,5 (a) I. persulcatus [35]

Turecko 0,4 (a) I. ricinus [87]

Jižní Korea 4,0 (a) I. nipponensis [40]
Vysvětlivky: l = larva, n = nymfa, a = dospělec, t = celková prevalence
Explanations: l = larva, n = nymph, a = adult, t = overall prevalence
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VÝSKYT B. MIYAMOTOI V ČESKÉ REPUBLICE 

První zmínka o  B. miyamotoi v  ČR pochází z  roku 
2007, kdy tým dr. Hulínské detekoval B. miyamotoi ve 
2 nymfách. Tato klíšťata však byla sejmuta ze ženy, která 
se právě vrátila z Magnitogorsku z Ruska, nedá se tedy 
hovořit o detekci B. miyamotoi na českém území [122].

Skutečné detekce B. miyamotoi v klíšťatech z ČR zná-
zorňuje tabulka 5, přičemž poprvé byla B. miyamotoi 
zaznamenána v  klíšťatech I. ricinus ve Vranově nad 
Dyjí. Další nálezy pocházejí především z  jižních Čech. 
Míra prevalence pak koresponduje s  nálezy v  jiných 
evropských zemích a nijak se tomuto trendu nevymy-
ká. Je pravděpodobné, že B. miyamotoi se vyskytuje 
v  klíšťatech na více místech ČR, nicméně více studií 
zabývajících se prevalencí B. miyamotoi v ČR zatím ne-
bylo publikováno [54, 95, 123, 124]. Na základě údajů 
EPIDAT publikovaných Státním zdravotním ústavem 
nebyl v  České republice dosud popsán jediný případ 
lidské infekce způsobené B. miyamotoi. Pilotní studie 
zaměřená na detekci B. miyamotoi u volně žijících hlo-
davců tyto spirochéty neprokázala (Rudolf et al., ústní 
sdělení).

LIDSKÉ ONEMOCNĚNÍ ZPŮSOBENÉ 
B. MIYAMOTOI 

Ačkoliv je B. miyamotoi řazena mezi ‚RF borrelie‘ 
a  hovoří se o  ní jako o  agens návratné horečky, bývá 
onemocnění odlišováno jako samostatná nozologická 
jednotka, neboť se od ‚klasické‘ návratné horečky v ně-
kterých ohledech liší. V literatuře se tak můžeme setkat 
s  několika termíny jako ‚BMD‘ (B. miyamotoi disease), 
‚HTBRF‘ (hard tick-borne relapsing fever) či ‚relapsing fe-
ver-like‘ (onemocnění podobné návratné horečce) [94, 
125, 126]. Popsané případy onemocnění B. miyamotoi 
u člověka včetně diagnostiky dokumentuje tabulka 6. 

SOUHRNNÉ SDĚLENÍ

Tabulka 4. Prevalence B. miyamotoi v  klíšťatech I. ricinus 
v jednotlivých státech Evropy, mimo Českou republiku
Table 4. Prevalence of B. miyamotoi in Ixodes ricinus ticks from 
Europe, the Czech Republic excluded 

Stát Prevalence (%) Reference

Nizozemí 3,1–3,84 (t) [88, 89]

2,1–3,4 (n) [59, 90]

0,35 (Dermacentor reticulatus) [46]

Francie 3,0 (t) [60]

0,9–2,5 (n) [90–92]

Německo 2,8 (n) [93]

1,8–3,5 (a + n) [94–96]

0,1 (l) [93]

2,3–2,7 (t) [97]

Slovensko 0,5–0,75 (t) [97, 98]

1,0–1,7 (a + n) [61, 99]

Švýcarsko 0,17 (l + n) [66]

Švédsko 0,6 (a) [6]

0,3 (t) [100]

Velká 
Británie

0,3–0,73 (a + n) [101, 102]

Irsko 1,0 (n) [103]

Polsko 0,94–2,0 (a + n) [104, 105]

6,2 (n) [67]

Rakousko 0,86 (t) [106]

2,0 (n), 3,3 (l) [54]

Belgie 0,6–3,8 (n) [107]

1,14 (t) [89]

Maďarsko 2,94 (t) [108]

Španělsko 1,0 (a + n) [109]

0,1 (np-MIR), 0,14 (ap-MIR) [70]

0,85 (t) [110] 

Dánsko 0,2–1,3 (n) [90]

1,1 (l + n) [111]

Norsko 0,62 (t), 0,9 (n) [112, 113]

Estonsko 2,7 (I. persulcatus, a + n)
0,4 (I. ricinus, a + n

[114]

Srbsko 1,4 (a + n) [115]

Ukrajina 1,1 (a + n) [116]

Itálie 0,74 (n) [117]

Rumunsko 0,33 (t) [118]

Finsko 0,7 (n), 1,1 (a) [119]

Lotyšsko 1,0 (a) [120]
Vysvětlivky: l = larva, n = nymfa, a = dospělec, t = celková prevalence, 
lp = larva pool, np = nymfa pool, ap = pool dospělců, MIR = minimální 
prevalence
Explanations: l = larva, n = nymph, a = adult, t = overall prevalence, 
lp = larva pool, np = nymph pool, ap = adult pool, MIR = minimal 
prevalence

Tabulka 5. Detekce B. miyamotoi v klíšťatech I. ricinus na úze-
mí České republiky 
Table 5. Detection of B. miyamotoi in Ixodes ricinus ticks from 
the Czech Republic 

Oblast (rok sběru) Prevalence (%) Reference

Vranov (2008–2009) 0,6 (l); 1,1 (lp-MIR) [54]

Zavadilka, Blatná, Dačice 
– Jižní Čechy
(2008–2012)

2,0 (a+n) [95]

České Budějovice, Zliv 
(2012–2013)

1,11 (a+n) [123]

Zavadilka, Blatná, Dačice 
– Jižní Čechy (2010)

2,1 (n) [124]

Vysvětlivky: n = nymfy; a = dospělec; l = larva; lp = larva pool; 
MIR = minimální prevalence
Explanations: n = nymph; a = adult; l = larva; lp = larva pool; MIR = mi-
nimal prevalence
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Obvykle se jedná o horečnaté onemocnění s nespe-
cifickými příznaky, přičemž mezi ty nejčastější patří ho-
rečka, zimnice, vyčerpanost, bolesti hlavy, svalů a klou-
bů, onemocnění je výjimečně provázené vyrážkou. 
Horečnaté stavy mohou doprovázet v tzv. relapsy, jed-
ná se o vlastnost typickou pro ‚RF borrelie‘ – díky změ-
nám ve Vmps (‚Variable major proteins‘) může docházet 
k návratům horečky, která je výsledkem imunitní reak-
ce na nový sérotyp. Nejčastěji dokumentovanými la-
boratorními nálezy jsou leukopenie, trombocytopenie 

a zvýšené hladiny jaterních enzymů (AST a ALT). U ně-
kterých pacientů byla dokumentována přítomnost EM, 
je však považována za netypický příznak pro onemoc-
nění B. miyamotoi a bývá připisována spíše koinfekcím 
s B. burgdorferi s. l. [7, 11, 12, 36, 125, 128, 129, 134].

Onemocnění B. miyamotoi je tedy svými příznaky 
podobné dalším klíšťaty přenášeným bakteriálním 
infekcím (tab. 7). Byl dokumentován vyšší výskyt one-
mocnění B. miyamotoi u pacientů vykazujících přízna-
ky lidské granulocytární anaplazmózy (HGA) [10, 130]. 

SOUHRNNÉ SDĚLENÍ

Tabulka 6. Souhrn případů onemocnění způsobených B. miyamotoi včetně provedené diagnostiky a léčby
Table 6. Human clinical cases caused by B. miyamotoi including diagnostic approach and treatment 

Stát Počet potvrzených 
lidských případů Metoda průkazu agens Léčba Reference

Rusko 46 qPCR ceftriaxon, doxycyklin [7]

2 PCR, ELISA doxycyklin [127]

USA
97 PCR, rGlpQ ELISA

doxycyklin, amoxicilin, ceftriaxon, 
levofloxacin

[129]

8 Multiplex RT-PCR – [74]

18 PCR
doxycyklin, amoxicilin, cefuroxim, 

amoxicilin-klavunát
[128]

3 PCR doxycyklin [125]

1 (dítě 5 let) PCR, rGlpQ ELISA, Western blot azitromycin [126]

2 PCR, sekvenování doxycyklin [130]

1 PCR, ELISA, Western blot žádná [131]

7 PCR doxycyklin [132]

Nizozemí
1

PCR, rGlpQ a rVmps ELISA, 
Western blot

žádná [133]

Japonsko 2 qPCR, rGlpQ Western blot minocyklin, ceftriaxon [11]

1 (importovaná) rGlpQ imunoblot doxycyklin [134]

Čína 14 PCR, sekvenování doxycyklin [12]

Francie 43 qPCR, sekvenování – [135]

Rakousko 1 PCR, sekvenování doxycyklin [16]
Poznámka: ‚–‘ údaje o léčbě nejsou známy, rGlpQ – rekombinantní protein GlpQ, rVmps – rekombinantní Vmp proteiny
Remark: ‚–‘ -data on treatment are not available, rGlpQ – recombinant protein GlpQ, rVmps – recombinant Vmp proteins

Tabulka 7. Srovnání klinických příznaků lymeské borreliózy, návratné horečky, lidské granulocytární anaplazmózy a onemocnění 
způsobené B. miyamotoi [37, 136]
Table 7. Comparison of clinical symptoms between Lyme borreliosis, human granulocytic anaplasmosis and disease caused by 
B. miyamotoi [37, 136]

Onemocnění Patogen Vektor Klinické příznaky a laboratorní nález

Lymeská borrelióza B. burgdorferi s. l. Ixodes spp. erythema migrans, nespecifické horečnaté onemocnění, 
diseminovaná infekce: artritida, meningoradikulitida, 
myokarditida, acrodermatitis chronica atrophicans, 
lymfocytom

Návratná horečka Borrelia spp. Ornithodoros spp. návratné nespecifické horečnaté onemocnění, zmatenost, 
světloplachost, bolest očí, vyrážka, bolest zad, žloutenka, 
trombocytopenie, anémie, hepatosplenomegalie

Lidská granulocytární 
anaplazmóza 

Anaplasma 
phagocytophilum

Ixodes spp. nespecifické horečnaté onemocnění, leukopenie, 
trombocytopenie, zvýšené AST/ALT, lymfadenitida

Onemocnění způsobené 
B. miyamotoi

B. miyamotoi Ixodes spp. návratné nespecifické horečnaté onemocnění, leukopenie, 
trombocytopenie, zvýšené AST/ALT
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možného přenosu onemocnění krevní transfuzí či 
krevními deriváty. Bylo dokumentováno úspěšné pře-
žívání B. miyamotoi v uskladněné myší krvi a touto krví 
dokonce došlo k nákaze imunokompromitované i imu-
nokompetentní myši. Experimentálně byla prokázána 
schopnost B. miyamotoi přežívat i v uskladněné lidské 
krvi [142, 143].

Objevují se také spekulace o souvislosti onemocnění 
způsobeném B. miyamotoi s  tzv. perzistentním poly-
morfickým syndromem po sání klíštěte. Jedná se o sou-
bor příznaků, které u  pacientů přetrvávají po dlouhé 
roky – např. celková tělesná slabost, závratě, bolesti 
kloubů, poruchy spánku či neurokognitivní poruchy. 
Franck et al. poprvé dali do souvislosti tyto příznaky 
s B. miyamotoi, kdy ji detekovali u pacientů, u nichž per-
zistentní polymorfický syndrom přetrvával celé roky 
a současně byli negativní na Lymeskou borreliózu [135].

LÉČBA ONEMOCNĚNÍ ZPŮSOBENÉ 
B. MIYAMOTOI   

Léčba onemocnění způsobené B. miyamotoi bývá vo-
lena empiricky na základě zkušeností s léčbou Lymeské 
borreliózy a  používá se tedy podobný léčebný režim. 
Lékem volby jsou tetracykliny (doxycyklin), následova-
né penicilinovou řadou (amoxicilinem, peniciliem G), 
popř. cefalosporiny (ceftriaxonem), které byly nasazo-
vány především u  případů meningoencefalitidy. Citli-
vost B. miyamotoi na antibiotika byla dosud studována 
pouze in vitro. Koetsveld et al. (2017) prokázali vyšší 
citlivost vůči doxycyklinu a  azithromycinu, podobnou 
citlivost k ceftriaxonu a relativní rezistenci k amoxicili-
nu u B. miyamotoi v porovnání s B. burgdorferi s. l [144, 
145]. Tabulky 6 a  9 dokumentují antibiotickou léčbu 
u  jednotlivých případů onemocnění B. miyamotoi. Při 
léčbě onemocnění B. miyamotoi je nutné brát v potaz 
možné riziko Jarisch-Herxheimerovy reakce, která byla 
pozorována např. u pacientů v Rusku či v USA [7, 13].

DIAGNOSTIKA ONEMOCNĚNÍ ZPŮSOBENÉ 
B. MIYAMOTOI A METODY DETEKCE 
V KLÍŠŤATECH

Mikroskopie
Borrelie lze v  klinických vzorcích detekovat mikro-

skopickými metodami, nejčastěji z  krve či z  mozko-
míšního moku (v  případě neuroinfekce). Mezi běžná 
doporučení lze zařadit mikroskopii tenkých či tlustých 
krevních roztěrů barvené podle Giemsy či dle Wri-
ghta. Telford et al. ve své studii poukazují na nedo-
statečnou citlivost pro detekci B. miyamotoi, ačkoliv 
se tato metoda s  úspěchem využívá pro detekci kla-
sických ‚RF borrelií‘, kde však dosahuje vyšší citlivos-
ti než u B. miyamotoi (patrně z důvodu rozdílné míry 
bakterémie) [36, 142, 146]. Mezi další metody patří 

Řada séroprevalenčních studií potom potvrzuje pří-
tomnost specifických protilátek u lidí právě z endemic-
kých oblastí výskytu Lymeské borreliózy či HGA (tab. 8).

V souvislosti s onemocněním B. miyamotoi bylo do-
sud popsáno celkem 5 případů meningoencefalitidy 
(tab. 9). Předpokládá se, že k propuknutí meningoen-
cefalitidy dochází u imunokompromitovaných pacien-
tů. Nově je však dokumentována meningoencefalitida 
i  u  imunokompetentní pacientky [13, 14, 15, 141]. Při 
vyšetřování mozkomíšního moku u  těchto případů 
byla dokumentována především pleocytóza (leuko-
cyty, monocyty), zvýšená hladina proteinů, albuminu 
a laktózy. Tyto laboratorní nálezy poukazovaly na cha-
rakter aseptické meningitidy [13, 14, 15, 141]. 

Ačkoliv nebyl dosud popsán žádný případ náka-
zy  krevní transfuzí, někteří autoři poukázali na riziko 

SOUHRNNÉ SDĚLENÍ

Tabulka 8. Vybrané seroprevalenční studie detekující B. miya-
motoi u různých skupin pacientů
Table 8. Seroprevalence studies concerned on selected 
groups of patients with antibodies to B. miyamotoi 

Stát Séropreva-
lence (%)

Poznámka Reference

USA 1,0 skupina vzorků 
z endemické 
oblasti výskytu LB

[8]

3,2

21,0 skupina pacientů 
s podezřením LB

USA 3,9 zdraví účastníci 
studie

[137]

9,7 pacienti s LB

3,6 pacienti 
s horečnatými 
stavy

USA 25,7 skupina vzorků 
z endemické 
oblasti výskytu LB

[138]

USA 2,6 pacienti, jež 
dokumentovali 
nedávné přisátí 
klíštěte

[139]

Kanada 9,6 skupina pacientů 
s podezřením LB

[9]

Nizozemí 2,0 dárci krve [10]

10,0 riziková skupina 
(dřevorubci)

14,6 pacienti 
podezřelí HGA

Japonsko 2,6 skupina pacientů 
s podezřením LB

[140]

Poznámka: LB = Lymeská borrelióza, HGA = lidská granulocytární 
anaplazmóza
Remark: LB = Lyme borreliosis, HGA = human granulocytic anaplasmosis
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mikroskopie v  temném poli (‚dark-field microscopy‘) 
nebo vizualizace pomocí fluorescenčně značených 
protilátek (z důvodu zkřížených reakcí často poskytu-
je pouze orientační výsledek). Obecně však platí, že 
dané mikroskopické metody dovolují pouze zobrazit 
spirochety ve vyšetřovaném vzorku a zhodnotit jejich 
morfologii. Určení druhu spirochety se pak opírá o kli-
nickou manifestaci onemocnění či výsledky PCR nebo 
sérologie [13, 36, 50, 142]. 

Kultivace B. miyamotoi in vitro
Kultivace spirochet patří mezi důležité nástroje 

pro studium bakterií, má však omezený význam pro 
jejich diagnostiku. Kultivace borrelií je časově nároč-
ná, neboť spirochety vyžadují specifická média a kul-
tivační podmínky (mikroaerofilní růst). Pro úspěšnou 
kultivaci borrelií se rutinně používá BSK médium 
(Barbour-Stoener-Kelly), stejně jako jeho varianty – 
BSK-II, BSK-H, či MKP (modified Kelly-Pettenkofer) 
[147, 148]. B. miyamotoi byla poprvé kultivována při 
své primoizolaci v roce 1995 právě na médiu BSK-II na 
základě zkušeností s kultivací jiných ‚LD‘ či ‚RF borre-
lií‘ [4]. Dalším často užívaným médiem je právě MKP. 
Jedná se o  médium složité na přípravu, mnohé jeho 
složky mohou být obměňovány. Mezi jeho složky patří 
želatina, telecí fetální sérum, CMRL, králičí sérum, BSA 
(hovězí sérový albumin), HEPES, glukóza, neopep-
ton, hydrogenuhličitan sodný, citrát sodný, pyruvát 
sodný a N-acetyl glukosamin [149, 150]. Optimalizací 
podmínek pro kultivaci B. miyamotoi se ve své práci 
zabývali Margos et al. Nejoptimálněji B. miyamotoi 
rostla na MKP s 30–50 % lidského séra, při 33 ºC, 6 % 
CO2 po dobu 7–9 dní. Prokázali také, že užití lidského 
séra namísto králičího, vykazuje vyšší stimulaci růstu 
v  případě B. miyamotoi [148]. Kultivace B. miyamotoi 

zůstává výhradně nástrojem pro výzkum. Koetsveld 
et al. prokázali, že B. miyamotoi lze kultivovat i  z  hu-
mánního klinického materiálu (krve), ale diagnostická 
hodnota není příliš vysoká, z důvodu omezené doby 
bakterémie a z důvodu jejího vymizení mezi horečna-
tými epizodami [151].

PCR a sekvenování
Mezi další hojně užívané přímé metody detekce 

B.  miyamotoi patří i PCR, která bývá hojně využívána 
pro detekci v klíšťatech, avšak v menší míře se uplat-
ňuje i v diagnostice humánních onemocnění B. miya-
motoi. Nejčastěji užívanými cíli PCR jsou kupříkladu 
geny pro ribozomální podjednotky, jejich jednotli-
vé úseky či mezerníky (16S rRNA, 16S-23S rRNA IGS, 
5S-23S rRNA IGS), flaB (gen pro flagellin), recG (gen pro 
DNA helikázu), purB (gen pro adenylosukcinát lyázu) 
a  nakonec glpQ (gen pro glycerolfosfodiester fosfo-
diesterázu), jež má při detekci B. miyamotoi výsadní 
postavení. Jedná se totiž o gen, který se v rámci rodu 
Borrelia nachází pouze u ‚RF borrelií‘. Gen pro GlpQ 
tudíž představuje specifický cíl především u  detekce 
B.  miyamotoi v  klíšťatech, neboť se jedná o  jedinou 
dosud popsanou ‚RF borrelii‘ nalezenou v  klíšťatech 
rodu Ixodes. Nevýhodou však může být nižší senzitivi-
ta. Pro detekci B. miyamotoi lze použít i další varianty 
PCR (multiplex PCR, real-time PCR, nested-PCR) či sek-
venování nové generace (NGS) [7, 11, 35, 36, 41, 57, 71, 
74, 80, 81, 97, 152]. Pro klinickou diagnostiku má však 
PCR omezené využití, B. miyamotoi lze totiž deteko-
vat pouze v  raném stadiu onemocnění, tj. při akutní 
bakterémii v krvi (v prvních 4–6 dnech) a následně při 
relapsech onemocnění [7, 37, 125, 153]. Po samotné 
amplifikaci často následuje sekvenování za účelem 
porovnání sekvence a  určení identity daného úseku, 
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Tabulka 9. Klinické případy meningoencefalitidy způsobené B. miyamotoi 
Table 9. Clinical cases of meningoencephalitis caused by B. miymotoi 

Země původu Věk/pohlaví Anamnéza Klinické příznaky Léčba Reference

USA 80/F non Hodgkinův lymfom 
(folikulární IIA)

bradypsychismus, zmatenost, 
porucha chůze, zhoršení sluchu, 
ztráta chuti k jídlu a pokles 
hmotnosti

ceftriaxon
penicilin G

[13]

Nizozemí 70/M non Hodkingův lymfom (difuzní 
velkobuněčný B-lymfom)

snížené kognitivní funkce, 
výpadky paměti, porucha chůze

ceftriaxon [14]

Německo 74/F non Hodgkinův lymfom 
(folikulární, stadium 4)

závratě, zvracení, bolesti hlavy, 
ztuhlost šíje

ceftriaxon [15]

Švédsko 66/F revmatoidní artritida (léčeno 
metotrexátem a rituximabem)

únava, výpadky paměti, 
zhoršená koncentrace, sluchové 
potíže

doxycyklin [141]

Švédsko 53/F v minulosti cholecystektomie, 
bypass žaludku, jinak 
imunokompetentní

bolesti hlavy, ztuhlost šíje, 
horečka

doxycyklin [141]

Vysvětlivky: F = žena, M = muž
Explanations: F = female, M = male
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i  medicínské komunity velmi nízké. Současně nejsou 
k  dispozici žádné široce rozšířené možnosti rutinního 
klinického testování [20] zejména jednotné diagnostic-
ké testy specifické pro B. miyamotoi navržené výhrad-
ně pro specifické markery, které umožní B. miyamotoi 
odlišit od agens Lymeské borreliózy (GlpQ, Vmps). Spi-
rocheta B. miyamotoi vykazuje zkřížené reakce v rámci 
sérologických reakcí prováděných na detekci protilátek 
proti B. burgdorferi s. l., především pak v prvním stupni 
(ELISA). Z pohledu současné diagnostiky tedy může do-
cházet k záměně za Lymeskou borreliózu a vzhledem 
k podobnosti klinických příznaků i za lidskou granulo-
cytární anaplazmózu [7, 36, 125, 130]. Další diagnos-
tickou komplikací je fakt, že v  případě podezření na 
Lymeskou borreliózu či HGA dochází často k empirické-
mu nasazení ATB, které zabírají i na případné onemoc-
nění B. miyamotoi, a nedojde tedy k následnému zjiš-
tění původce nákazy [20, 125]. Séroprevalenční studie 
provedené v USA [8] či Nizozemí [10] však ukazují, že 
lidé jsou běžně exponováni B. miyamotoi. Je tedy prav-
děpodobné, že mnoho lidí onemocnění způsobené 
B. miyamotoi prodělá pod obrazem nespecifického ho-
rečnatého onemocnění či dojde k asymptomatické ná-
kaze. Protože jde o poměrně nového patogena, existuje 
řada nezodpovězených otázek jak z oblasti základního 
výzkumu (distribuce rozdílných genetických variant 
B. miyamotoi v přírodě, ekologie spirochéty v přírodním 
ohnisku nákazy, perzistence v klíštěti, koinfekce s ostat-
ními patogenními zástupci), tak z  klinického pohledu 
(virulence kmenů, riziko nákazy u  imunokompetent-
ních obyvatel, riziko přenosu transfuzí, přesná diagnos-
tika a bezpečný terapeutický režim) [20].
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