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Potential anticancer agent hypericin and its model compound
emodin: interaction with DNA
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Introduction

Hypericin (HYP) (Fig. 1a) is a natural
photosensitizing pigment occurring in plants of the
genus Hypericum. HYP under light illumination displays
anti-proliferative and cytotoxic effects on many tumour
cell lines1, 2). These properties together with minimal dark
toxicity, tumour selectivity and high clearance from the
host body make HYP a very promising agent in
photodynamic therapy of cancer. Due to its prospective
pharmaceutical utilization, this interesting molecule has
been the subject of investigation of many scientific
research groups3–6).

Our team has been dealing with the interaction of HYP
and its derivatives (such as emodin, quinizarin, danthron,
alizarin) with important bio macromolecules to better
understand a drug’s mechanism of action.

The interaction of the drug with linear calf thymus
DNA is the main aim of this contribution. The binding
constant and interaction mode have been determined by
spectrophotometric methods. The model compound of
HYP, emodin (E) (Fig. 1b), was considered in our study
for its structural similarity with the HYP molecule. In
addition, emodin, a plant derived anthraquinone, was
found to be a photosensitizer which possess anti-tumour,
anti-bacterial, anti-viral, anti-inflammatory, and
myorelaxing activities7, 8). Detailed knowledge of the
interaction of HYP and E with the DNA at the molecular
level is extremely important in determination of their
distribution and therapeutic effect in the body.

Experimental methods

Hypericin was purchased from KRD (Slovakia),
emodin and high polymerized calf thymus DNA were
obtained from Sigma-Aldrich (Germany). Stock
solutions of HYP (10–4 mol/l) and E (10–3 mol/l) were
prepared in DMSO, which was acquired from Sigma-
Aldrich (Germany). Calf thymus DNA (2 · 10–3 mol/l)
was dissolved in TE buffer (10 mmol/l Tris and 1 mmol/l
EDTA), pH = 7.4 by stirring at 4 °C. 

Binding constants were determined by fluorescence
(fluorimeter RF – 5301 PC Shimadzu) and absorption
spectrophotometry (an absorption spectrophotometer
UV-VIS 2401 PC Shimadzu) using equilibrium receptor-
ligand binding analysis by Copeland9).
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Fig. 1. Chemical structure of hypericin (a) and emodin (b)
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We used an influence of the drug on thermal
denaturation of DNA to determine the mode of its
interaction with the macromolecule. For this purpose, an
absorption spectrophotometer Specord UV-VIS Analytik
Jena connected with Peltier module was used. This
experimental arrangement enables continuous increasing
of temperature with step 1 °C per minute. Temperature
range of measurement was 20–90 °C. Absorption curves
of samples were recorded every 2 minutes. The samples
were filtrated on MillexGV (0.22 µm) before
measurement. Melting curves were fitted by Van’t Hoff
equation:

Amax – Amin
A = Amin + ––––––––––––––––

1 + e
[

∆H           1        1
]––––– × (–––– – ––––)

R             T          T
m

where A absorbance, Amin minimal measured
absorbance, Amax maximal measured absorbance, ∆�H
enthalpy of transition, R gas constant, T temperature, Tm
melting temperature.

All spectra and figures were evaluated in Origin 6.0
and 8.0 and Grafit programs.

Results and discussion

Binding constants express the strength of interaction
between macromolecules and ligands9). We used
fluorescence spectroscopy for a measurement of
dependence of HYP (10–6 mol/l) fluorescence intensity
on DNA concentration (10–8 – 3 · 10–5 mol/l) to
determine binding constants of the complexes
HYP/DNA. Figure 2a shows experimental data fitted by
Langmuir isotherm, which gives the equilibrium
dissociation constant. Semi-logarithmic graphical
representation of equilibrium binding analysis was also
used in our calculation to find a more exact binding
constant value (Fig. 2b). Considering both graphical
approaches, the binding constant of the HYP/DNA
complex has been appointed as 4.0 · 104 l/mol.
Comparing with other drugs which are typical DNA

intercalators such as actinomycin D (binding constant
Kb = 1.9 · 106 l/mol)10) or mitoxantron (Kb = 3.9 ·
105 l/mol)11) our obtained value does not point to an
intercalation mode of the DNA – HYP interaction. In
addition, the HYP derivatives danthron and quinizarin
interacting with DNA by electrostatic interactions12) have
similar binding constant as HYP13). Moreover, another
model compound of HYP – emodin has been examined
by fluorescence and absorption spectroscopy (see below)
and the value of its measured binding constant and
thermodynamic parameters point to a non-intercalative
mode of interaction with DNA.

The most probable binding sites in the DNA structure
for HYP molecule were found by Raman spectroscopy14).
Vibrational spectra HYP in a complex with
polynucleotides show that N7 of purines, preferentially
guanine, is included into the interaction. These findings
and the value of the binding constant lead us to the
supposition of the groove binding mode of interaction. 

Model compound of HYP emodin is a molecule which
can serve for a better understanding of the binding effect
of more complex drugs on macromolecules such as DNA
or transport proteins. Fluorescence and absorption
spectroscopy were used to measure the binding constant
of E/DNA complex, which was 8.1 · 104 l/mol.

Fluorescence quenching of emodin as a result of
adding DNA, formation of the non-fluorescence
complex E/DNA and the value of the binding constant
can lead us to assume that emodin interacts with DNA by
a non-intercalative but groove binding mode of
interaction. 

Absorption analysis has confirmed our results
obtained by fluorescence measurements. Hyper -
chromicity and small bathochromic shift of the
absorption maximum (not shown) indicate that E and
DNA molecules interact through electrostatic forces or
hydrogen bindings15). Bond by electrostatic forces can be
excluded since the value of the binding constant
indicates that it is the interactions through hydrogen
bonds that are associated with binding to the groove. 

In addition, we proved our results by denaturation of
pure DNA and E/DNA complexes in ratios 1/1, 2/1, 3/1
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Fig. 2. Langmuir isotherm of HYP/DNA complex (a). L represents the concentration of DNA and B is normalized HYP fluores-
cence intensity (excitation wavelength: 560 nm). Concentrations are mentioned in the text. Semi-logarithmic representation of bin-
ding curve (b). Final binding constant was taken as an average of two ones obtained from a, and b.

a) b)
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by absorption spectroscopy connected with a Peltier
module. Melting curves that can be seen in Figure 3a
show a destabilizing effect of the drug on calf thymus
DNA. They were fitted (Fig. 3b) using Van’t Hoff
equation to obtain main thermodynamic characteristics
(Tm, �∆T, �∆H). 

Melting temperature Tm is shifted from 67.5 °C (pure
DNA) to 57 °C for the complex E/DNA in 2/1
concentration ratio (Table 1). Also Van’t Hoff enthalpy
�∆H is decreasing from 388 kJ (pure DNA) to 126 kJ
(E/DNA = 2/1), which means that lower energy is needed
for denaturation of 50% base pairs of DNA in the
complex with emodin. The changes in all
thermodynamic parameters lead us to a claim that
emodin destabilizes the calf thymus DNA molecule and
this destabilization is associated with the groove binding
interaction mode16). Our findings can be supported by the
fact that an intercalative mode of interaction manifests in
thermal stabilization of the DNA molecule due to drug
binding16). 

It is generally supposed that small molecules like
emodin bind preferentially into the minor groove of
DNA, especially to regions which are rich in AT base
pairs17). 

In our experiments the melting curve of the complex
E/DNA in 3/1 (Fig. 3a, Table 1) shows a two-phase
character with an expressive destabilization of AT
regions in DNA.

Conclusion

The binding constant values of the potential anticancer
drugs hypericin and emodin lead us to assume that these
molecules do not bind into the DNA structure by an
intercalative mode of interaction.

The emodin influence on denaturation of the DNA
macromolecule points to the groove binding mode of
interaction and the incorporation of the drug takes place
probably into the DNA minor groove by hydrophobic or
hydrogen interactions. Shahabadi et al.18) showed that the
antidiabetic agent metformin with the binding constant
of 8.3 · 104 l/mol binds into the minor groove in the DNA
structure. These findings can support our results.

Considering the binding characteristics of emodin as
a model compound of hypericin, we can suppose that
hypericin binds into the DNA major groove. Results
obtained by Koãi‰ová14) and the largeness of the
hypericin molecule lead us to this assumption. 
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Fig. 3. Normalized melting curves of pure DNA and complexes E/DNA in ratios 1/1, 2/1, 3/1. DNA concentration: 3 · 10–5 mol/l,
emodin concentration: 3 · 10–5 mol/l – 9 · 10–5 mol/l (a). Illustration of Van‘t Hoff fit for complex E/DNA in ratio 1/1 (b).

Table 1. Thermodynamic characteristics determined from the melting curves of pure DNA and the complexes E/DNA in concent-
ration ratios 1/1, 2/1, 3/1

1st phase 2nd phase

Tm (°C) T1 (°C) T2 (°C) � ∆T (°C) � ∆H (kJ) Tm (°C) ∆�H (kJ)

DNA 67,5 56,6 75,1 18,5 388    

1/1 66,8 51,7 77,1 25,4 190    

2/1 57,0 36,9 75,5 38,6 126

3/1 46,7 35,8 59,4 23,6 for 325 94,4 121 for 

AT pairs GC pairs

a) b)
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