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Souhrn

Rostlinná buÀka mÛÏe reagovat na nadbytek tûÏk˘ch
kovÛ ve svém prostfiedí rÛzn˘mi mechanismy, vãetnû
zv˘‰ené biosyntézy sekundárních metabolitÛ. V této práci
byly testovány zineãnaté (0 aÏ 1500 �µM) a kademnaté (0
aÏ 100 �µM) ionty jako potenciální elicitory produkce
kumarinÛ v suspenzních kulturách andûliky lékafiské.
Navíc byla posuzována toxicita obou kovÛ hodnocením
jejich úãinku na bunûãn˘ rÛst (charakterizován ãerstvou
a suchou hmotností biomasy na konci ãtrnáctidenní
kultivace). Bylo zji‰tûno, Ïe ãerstvá hmotnost nebyla
ovlivnûna zinkem do koncentrace 150 µM u kultur ve tmû
a 300 µM na svûtle. Potom klesala s rostoucí hladinou
zinku. Zinek v koncentraci 1500 µM ji sníÏil v kulturách
rostoucích ve tmû o 54 %, za svûtla o 24 %. Suchá hmota
byla ovlivnûna podobn˘m zpÛsobem. Zinek v kon cen -
traci 1500 µM redukoval suchou hmotnost pfii kultivaci
ve tmû o 30 %, na svûtle o 20 %. Kademnaté ionty
neovlivnily ãerstvou a suchou hmotnost bunûk u kultur ve
tmû do koncentrace 10 µM, na svûtle do 50 µM. Toxické
koncentrace kadmia jsou o fiád niÏ‰í neÏ u zinku.
Kadmium v koncentraci 50 µM sníÏilo ãerstvou hmotnost
bunûk o 66 %, suchou o 59 % v kulturách ve tmû.
Kadmium v koncentraci 100 µM redukovalo ãerstvou
hmotnost bunûk o 40 %, suchou o 44 % v kulturách na
svûtle. Zineãnaté ani kademnaté ionty nezv˘‰ily produkci
kumarinÛ.
Klíãová slova: Angelica archangelica L. • suspenzní
kultura • rÛst • kumariny • zinek • kadmium • elicitace •
svûtelné podmínky • sekvenãní injekãní anal˘za

Introduction

Plant secondary metabolites are economically
important as drugs, flavours and fragrances, pigments,
pesticides, and food additives1, 2). In recent years the
evolving commercial importance of secondary
metabolites has resulted in a great interest in the
possibility of altering the production of bioactive
compounds by means of plant tissue culture technology3).
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Summary

The plant cell may respond to the excess of heavy metals
in its environment by various mechanisms, including
enhanced biosynthesis of secondary metabolites. In this
study, zinc (0 to 1500 �µM) and cadmium ions (0
to 100 �µM) were tested as potential elicitors of the
production of coumarins in angelica cell suspension
cultures. In addition, the toxicity of both metals was
assessed by evaluating their effect on cell growth
(characterized by fresh and dry biomass at the end of
a two-week subculture). It has been found that fresh
biomass was not influenced up to zinc concentrations of
150 and 300 µM in the dark-grown and light-grown
cultures, resp. Then it declined with an increasing zinc
level. Zinc at 1500 µM diminished it by 54% and 24% in
the dark-grown and light-grown cultures, resp. Dry bio -
mass was influenced in a similar way. Zinc at 1500 µM
reduced dry cell weight by 30% and 20% in cultures in
the dark and in the light, resp. Cadmium ions did not
affect fresh and dry weights of cells up to concentrations
of 10 µM and 50 µM in cultures in the dark and in the
light, resp. Toxic concentrations of cadmium are by an
order of magnitude lower than those of zinc. Cadmium at
50 µM reduced fresh and dry cell weights by 66% and
59%, resp., in the dark-grown cultures. Cadmium at
100 µM caused a decrease in fresh and dry biomass by
40% and 44%, resp., in the light-grown cultures. Neither
zinc nor cadmium improved production of coumarins.
Keywords: Angelica archangelica L. • cell suspension
cultures • growth • coumarins • zinc • cadmium •
elicitation • light conditions • sequential injection
analysis
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Table 1. Examples of plant cell cultures used for the commercial production of high-value secondary metabolites 4).

Species Metabolite Application

Taxus spp. paclitaxel anticancer

Lithospermum erythrorhizon shikonin anti-inflammatory, anticancer

Coptis japonica protoberberines antibiotic, anti-inflammatory

Thalictrum minus

Coleus blumei rosmarinic acid anti-inflammatory

Panax ginseng ginseng dietary supplement

Echinacea purpurea polysaccharides anti-inflammatory, immunostimulant

Echinacea angustifolia

Duboisia spp. scopolamine anticholinergic

Instruments
A PS 20A autoclave (Chirana, Brno, Czech Republic);

a roller (Vyvojové dílny, Academy of Sciences of the
Czech Republic, Praha, Czech Republic); a 200S
analytical scale (Sartorius, Göttingen, Germany);
a laboratory centrifuge MPW 342 (MPW Med.
instruments, Warsaw, Poland); a laboratory shaker KS
501 (IKA Labortechnik, Staufen, Germany); a peristaltic
pump (Alitea Instruments, Seattle, U.S.A); an eight
position selection valve (Vici Valco Instruments,
Brockville, Canada); and a FS 970 fluorescence detector
(Schoeffel Instrument Corp., Westwood, U.S.A.).

Cell suspension cultures and culture conditions
Tissue cultures of Angelica archangelica were derived

from a bud of an in spring sprouting one-year old plant
grown in the Botanical Garden of Faculty of Pharmacy in
Hradec Králové. Callus cultures were established from the
bud meristem and maintained by subculturing every five
weeks on Murashige and Skoog medium18) supplemented
with 2 mg l–1 2,4-dichlorophenoxyacetic acid, 0.4 mg l–1

benzylaminopurine, 30 g l–1 sucrose, and 8 g l–1 agar. The
pH of all media was adjusted to 5.7 before autoclaving at
121 °C for 15 min. Cell suspension cultures were initiated
from friable calluses in the same medium devoid of agar.
They were agitated in 250 ml flasks containing 30 ml of
the medium on a roller apparatus at 8 rpm, incubated at
25 ± 1 °C under a 16/8 light/dark photoperiod or in the
dark, and subcultured every two weeks.

For testing the effects of metal ions, the cultures were
cultured in Murashige and Skoog media supplemented
with an appropriate concentration of zinc sulphate (0, 30,
60, 150, 300, 600, and 1500 µM) or cadmium sulphate
(0, 0.1, 0.5, 1, 2, 5, 10, 50, and 100 µM). After 14 days,
the cultures were harvested, and the cell growth and
production of coumarins were evaluated. All
experiments were carried out in triplicate and repeated
three times.

Analytical procedures
Cells were separated from the culture medium by

vacuum filtration using a Buchner funnel with filter
paper. For evaluation of the culture growth, filtered cells
were washed with distilled water, weighed for fresh
weight determination, and then dried at 60 °C to obtain
dry weight.

Coumarins in cells and in the culture medium were
quantified fluorometrically by sequential injection

Some examples of successful commercial processes for
supply of pharmaceutically valuable substances are shown
in Table 14). However, the in vitro production is still facing
many biological and biotechnological limitations. One of
the obstacles is a low yield of metabolites in plant cell
cultures. Since the major roles of plant secondary
metabolites are to protect plants from attack by insect,
herbivores and pathogens, or to survive other biotic and
abiotic stresses, some strategies based on this principle
have been developed to improve the yield of such plant
secondary metabolites in vitro5). Plants as well as plant cell
cultures show physiological and morphological responses
to biological, physical, or chemical stress factors which
are known as elicitors3, 6). The elicitors include, e.g.,
components of microbial cells, heavy metal ions,
hyperosmotic stress, and ultraviolet radiation, as well as
the signalling compounds in plant defence responses such
as salicylic acid and methyl jasmonate7–9). The modes of
elicitor action are complex. Moreover, since little is
known about the biosynthetic pathways of most secondary
metabolites, the effect of an elicitor on a plant cell culture
cannot easily be predicted10). Therefore the majority of
elicitation approaches are empirical and the optimum
conditions have to be determined experimentally for each
system in particular.

Production of secondary metabolites has been
investigated in cell cultures derived from many plant
species in the family Apiaceae (Umbelliferae), e.g.,
Petroselinum crispum (coumarins)11), Anethum
graveolens (flavono ids)12), Pimpinella anisum
(coumarins)13), Daucus carota (anthocyanins)14), Ammi
majus (coumarins)15), Anth riscus sylvestris (lignans)16),
and Glehnia littoralis (anthocyanins and coumarins)17).

We report here the effects of zinc and cadmium
sulphates as potential elicitors on cell growth and
production of coumarins in Angelica archangelica cell
suspension cultures.

Experimental part 

Chemicals
2,4-dichlorophenoxyacetic acid, 6-benzylamino -

purine, and agar (plant cell culture tested, Sigma, Praha,
Czech Republic); scopoletin (analytical standard, Fluka,
Praha, Czech Republic); zinc sulphate, cadmium
sulphate, sodium phosphate dibasic, and potassium
phosphate monobasic (p.a., Lachema, Brno, Czech
Republic).
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Fig. 1. Angelica archangelica cell suspension cultures cultured under heterotrophic conditions. Photomicrograph of cell clusters
at a magnification of 200x and 400x (the scale is 50 and 20 µm, resp.).

Fig. 2. Angelica archangelica cell suspension cultures cultured under photomixotrophic conditions. Photomicrograph of cell clus-
ters at a magnification of 200x and 400x (the scale is 50 and 20 µm, resp.).

protein synthesis, enzyme activation, and metabolism of
carbohydrates, lipids or nucleic acids; and it is an integral
part of transcription factors controlling cell proliferation
and differentiation22). Zinc is suggested to have
a stabilizing and protective effect against reactive oxygen
species mediated oxidative and peroxidative damage in
cells22). Zinc and cadmium can be toxic to plants. The
toxic dose depends on the ion concentration and plant
species20). There are even plants thriving in metal-
enriched environments. Certain plant species, called
hyperaccumulators, accumulate and tolerate unusually
large amounts of metals compared to other plants and the
ambient metals concentration, without symptoms of
toxicity20, 23). Zinc and cadmium hyperaccumulators are,
for instance, Pistia stratiotes23), Thlaspi caerulescens24),
Arabidopsis halleri25), and Sedum alfredii26).

As mentioned above, heavy metal salts may be
employed to stimulate production of secondary
metabolites in plant tissue cultures27, 28). We have tested
zinc and cadmium ions in a wide range of concentrations
(zinc up to 1500 µM, cadmium up to 100 µM, based on
preliminary experiments; higher concentrations were
lethal for the culture) as potential elicitors of production
of coumarins in angelica cell suspension cultures. In
addition, the toxicity of zinc and cadmium for the culture
was assessed by evaluating their effects on cell growth,

analysis as described in detail previously19). In brief, the
powdered dry cells were extracted three times (always
15 min) by a mixture of equal volumes of methanol and
0.066 M phosphate buffer (pH 6) by shaking at 150 rpm
on an orbital shaker at laboratory temperature. The
extracts were pooled, adjusted to 25 ml with the extraction
mixture, centrifuged at 3.000 rpm for 10 min, and
analysed. The culture media were analysed direct. The
conditions of the sequential injection analysis were as
follows – a carrier stream: water; flow rate: 3 ml/min-1;
sample volume: 40 µl; volume of 0.066 M phosphate
buffer (pH 6): 100 µl; a 1.5 ml mixing coil; excitation
wavelength: 345 nm; and emission wavelength: a cut-off
emission filter transparent at ≥�390 nm. The contents of
coumarins were expressed as scopoletin (mg l–1 in the
medium and mg g–1 dry weight in the cells).

Experimental data were statistically analysed using
a one-way analysis of variance (ANOVA), followed by
Tukey’s multiple comparison test. Differences at p < 0.05
were considered as statistically significant.

Results and discussion

Zinc belongs to the essential trace elements, whereas
cadmium has no known biological function in plants20, 21).
Zinc participates in several metabolic processes such as
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Table 2. Effects of zinc ions on cell growth and production of coumarins in Angelica archangelica cell suspension cultures.
Values are means ± standard deviations (n = 3). Asterisks denote significant differences between control (30 µM Zn2+ as in stan-
dard Murashige and Skoog medium) and Zn-treated cultures, P < 0.05.

Cultures in the dark Cultures in the light 

Zn2+ Culture growth Production of coumarins Culture growth                 Production of coumarins 

concentration Fresh weight Dry weight Cells Medium Fresh weight Dry weight Cells Medium

(µ�M) (g) (mg) (mg g–1 dry (mg l–1) (g) (mg) (mg g–1 dry (mg l–1)

weight) weight)

0 7.71 ±� 0.21 307 ±� 4 0.77 ±� 0.04 0.31 ±� 0.08 6.21 ±� 0.25 348 ±� 4 1.01 ±� 0.03 2.09 ±� 0.01  

30 7.56 ±� 0.30 299 ± 9 0.77 ± 0.07 0.38 ± 0.08 6.02 ± 0.35 351 ± 4 0.99 ± 0.08 2.03 ± 0.02  

60 7.60 ± 0.11 305 ± 4 0.81 ± 0.02 0.41 ± 0.03 5.44 ± 0.28 350 ± 9 0.93 ± 0.02 1.75 ± 0.06  

150 7.27 ± 0.14 296 ± 3 0.75 ± 0.02 0.41 ± 0.02 5.38 ± 0.34 339 ± 8 0.98 ± 0.08 1.61 ± 0.02  

300 6.17 ± 0.49*� 278 ± 11 0.78 ± 0.01 0.59 ± 0.11 5.57 ± 0.23 348 ± 8 0.93 ± 0.02 1.32 ± 0.09*�  

600 3.46 ± 0.94*� 221 ± 33*� 0.39 ± 0.06*� 2.06 ± 0.87 4.93 ± 0.08*� 323 ± 3*� 0.82 ± 0.01 0.79 ± 0.05*�  

1500 3.35 ± 0.89*� 209 ± 22*� 0.23 ± 0.05*� 2.62 ± 0.58*� 4.60 ± 0.22*� 280 ± 14*� 0.65 ± 0.04*� 0.51 ± 0.07*

Table 3. Effects of cadmium ions on cell growth and production of coumarins in Angelica archangelica cell suspension cultures.
Values are means ± standard deviations (n = 3). Asterisks denote significant differences between control (without Cd2+) and
Cd-treated cultures, P < 0.05.

Cultures in the dark Cultures in the light 

Cd2+ Culture growth Production of coumarins Culture growth                   Production of coumarins 

concentration Fresh weight Dry weight Cells Medium Fresh weight Dry weight Cells Medium
(�µM) (g) (mg) (mg g–1 dry (mg l–1) (g) (mg) (mg g–1 dry (mg l–1)

weight) weight)

0 6.87 ± 0.27 390 ± 10 0.52 ± 0.02 1.30 ± 0.02 6.14 ± 0.13 380 ± 10 0.62 ± 0.03 2.92 ± 0.11  

0.1 6.65 ± 0.16 395 ± 4 0.50 ± 0.02 1.06 ± 0.08 6.07 ± 0.22 370 ± 7 0.60 ± 0.04 2.34 ± 0.16*�  

0.5 6.79 ± 0.07 390 ± 6 0.48 ± 0.02 0.98 ± 0.11 6.21 ± 0.25 372 ± 8 0.59 ± 0.03 2.32 ± 0.08�*

1 7.17 ± 0.23 391 ± 9 0.44 ± 0.01�* 0.79 ± 0.15*� 6.32 ± 0.21 372 ± 4 0.55 ± 0.01*� 1.95 ± 0.13�*

2 7.04 ± 0.18 393 ± 6 0.43 ± 0.01* 0.78 ± 0.04�* 6.29 ± 0.22 379 ± 7 0.57 ± 0.03 2.24 ± 0.15�*

5 7.16 ± 0.21 388 ± 3 0.42 ± 0.01* 1.03 ± 0.10 6.52 ± 0.30 369 ± 6 0.55 ± 0.01�* 2.32 ± 0.02�*

10 7.04 ± 0.25 402 ± 4 0.36 ± 0.02�* 1.22 ± 0.10 6.50 ± 0.29 352 ± 18 0.60 ± 0.01 3.12 ± 0.12  

50 2.36 ± 0.12*� 159 ± 14�* 0.07 ± 0.01*� 1.06 ± 0.02 6.09 ± 0.11 358 ± 5 0.47 ± 0.02* 3.01 ± 0.11  

100 1.17 ± 0.07�* 96 ± 8�* 0.03 ± 0.01�* 1.26 ± 0.03 3.71 ± 0.45*� 213 ± 26* 0.13 ± 0.03* 0.69 ± 0.02*

diminished it by 54% and 24% in the dark-grown and
light-grown cultures, respectively, in comparison to
control cultures in the standard MS medium. Dry
biomass was influenced in a similar way. Zinc ions at
1500 µM reduced dry cell weight by 30% and 20% in
cultures cultured in the dark and in the light, respectively.
As for production of coumarins, elimination of zinc from
the medium as well as its concentrations up to 300 µM
did not markedly affect the levels of coumarins in cells
and medium in the dark-grown and light-grown cultures.
Higher zinc concentrations decreased the contents of
coumarins in cells under both light conditions; in the
medium, coumarins declined correspondingly in the
cultures cultured in the light, but rose in those in the
dark, which could be due to damages in the cell
membrane or to cell lysis, as a consequence of zinc
toxicity. In the same way as in angelica cell cultures,
fresh and, similarly to a lesser extent, dry weights of
cultured tomato cells decreased with increasing zinc
concentrations from 500 to 5000 µM, markedly when
zinc concentration was higher than 1000 µM29). Toxicity
of zinc was investigated and compared in cell suspension
cultures of Arabidopsis halleri, a zinc hyperaccumulator,
and Mesembryanthemum crystallinum, a plant shown to

which was characterized by the fresh and dry weights of
cells (the most widely growth parameters used) at the
end of a two-week subculture. The cultures were
cultured in the dark or in the light because light
conditions are an important environmental factor
involved not only in the regulation of plant growth and
organogenesis, but also in the biosynthesis of primary
and secondary metabolites29, 30).

As shown in Figs. 1 and 2, cell cultures of Angelica
archangelica grew as a homogeneous suspension
consisting of cell clumps with the diameter of about
150 µm. There were no morphological differences
between cultures cultured under heterotrophic and
photomixotrophic conditions. No cell differentiation or
organogenesis was observed.

Effects of zinc ions on angelica cell suspension
cultures are presented in Table 2. Zinc sulphate is
a component of the basal Murashige and Skoog medium
(MS medium) at a concentration of 30 µM. Fresh
biomass was not significantly influenced in a range of
zinc concentrations from 0 (MS medium without zinc
sulphate) to 150 and 300 µM in the dark-grown and
light-grown cultures, respectively. Then it declined with
an increasing zinc level. Zinc ions at 1500 µM
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There are many reports concerning the influence of zinc
and cadmium on plants41–47). Various mechanisms of how
a plant cell reacts to an excess of essential heavy metal
ions, e. g. zinc, or the toxic ones that do not play a role in
metabolism, e. g. cadmium, were described. They include
an increase in the activities of antioxidant enzymes38) and
enhanced biosynthesis of amino acids (such as histidine48)

and cysteine37)), glutathione21), phytochelatins49),
metallothioneins48), organic acids (such as citrate and
malate)50), and secondary metabolites33, 39). The latter
mentioned way of plant cell reaction attracts research
attention because of its possible use for stimulation of
secondary metabolism in plant tissue cultures. However,
particular mechanisms occur to a different extent
depending on the plant species and the kind of heavy metal.
On the one hand, several of them, at various intensities,
may run together – side by side or one after another. On the
other hand, some of them can be involved weakly or not at
all. Based on our results, increased biosynthesis of
secondary metabolites does not participate in response of
angelica cultures to zinc and cadmium treatment. It can be
concluded that zinc and cadmium ions are not suitable as
elicitors enhancing the production of coumarins in
Angelica archangelica cell suspension cultures.
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