NOVÁ DIAGNOSTICKÁ ZOBRAZOVACÍ METODA – SHEAR WAVES ELASTOGRAFIE

SOUHRN

Shear waves elastografie (SWE) je nová neinvazivní diagnostická zobrazovací metoda, která mapuje elastické vlastnosti tkání. V dnešní době se SWE v medicíně stále více rozvíjí napříč jejími obory a otevírá novou éru kvalitního ultrazvukového vyšetření proto, že zvyšuje jeho specificitu a tím zlepšuje diagnostickou jistotu. Metoda je obdobou palpačního vyšetření, zobrazuje elastické vlastnosti biologických tkání a poskytuje jakousi rekonstrukci vnitřní struktury měkkých tkání na základě měření odezvy komprese tkáně. Různé biologické tkáně mají odlišnou elasticitu a změny těchto elastických vlastností jsou často odrazem patologických procesů v tkáni a jejími abnormalitami. Metoda se již na některých zahraničních pracovištích používá při detekci a diagnostice karcinomů prsní a štítné žlázy, karcinomů prostaty, v hepatologii, kardiologii, zobrazení karotických cév, lymfatického řečiště a muskuloskeletálního systému. V neposlední řadě se zkoumá její nesporný přínos v oftalmologii. Výstupem elastografie je ultrazvukový obraz B-mode překrytý barevně kódovanou mapou. Shear waves elastografie nabízí tři hlavní inovace: kvantitativní aspekt, prostorové rozlišení a zobrazení v reálném čase. **Klíčová slova:** ultrazvuk, elastografie, Youngův modul pružnosti, shear-wave, SonicTouch[™], Ultrafast[™] zobrazení

SUMMARY NEW DIAGNOSTIC IMAGING TECHNIQUE – SHEAR WAVE ELASTOGRAPHY

Shear wave elastography (SWE) is a new non-invasive diagnostic imaging technique, that maps the elastic properties of tissues. Nowadays this modality develops increasingly in medicine across its disciplines and opens a new era of high-quality ultrasound examination because it increases the specificity and thus improves diagnostic assurance. This method is similar to manual palpation, shows elastic properties of biological tissues and provides a kind of reconstruction of the internal structure of soft tissues based on measurement of the response of tissue compression. Various biological tissues have different elasticity and changes of these elastic properties often reflect pathological processes in the tissue and its abnormalities. This method is already used routinely on some foreign institutions in the detection and diagnosis of breast cancer and thyroid cancer, prostate cancer, in hepatology, cardiology, view the carotid arteries and lymphatic nodules. Finally examines its unquestioned benefit in ophthalmology. The output of elastography is an ultrasound image B-mode superimposed color-coded map. Shear waves elastography provides three major innovations: the quantitative aspect, the spatial resolution and the ability to run in real time.

Key words: ultrasound, elastography, Young's modulus, shear-wave, SonicTouch[™], Ultra-fast[™] display

Čes. a slov. Oftal., 72, 2016, No. 4, p. 103–110

ÚVOD

Ultrazvukové vyšetření je napříč moderní medicínou jedna z nejrozšířenějších diagnostických zobrazovacích metod a řadí se tak na první místa ve vyšetřovacím algoritmu. Ultrasonografie je stále se rozvíjející metoda, která v minulém století prodělala prudký rozvoj a díky své neinvazivnosti, relativně nízké pořizovací ceně a tím výborné dostupnosti, se stala nejčastěji používanou diagnostickou zobrazovací metodou v celé řadě lékařských oborů. Objev ultrazvukových vln se připisuje italskému biologovi a fyziologovi L. Spallanzanimu, který v roce 1794 demonstroval schopnost netopýrů orientovat se ve tmě pomocí odrazů vysokofrekvenčního neslyšitelného zvuku (tzv. echolokace) [23]. V roce 1880 bratři P. a J. Curieové objevili piezoelektrický jev, na jehož principu zkonstruoval v roce 1916 francouzský fyzik P. Langevin první piezoelektrický měnič, který je podstatou dnešních ultrazvukových sond. První publikace o možnosti využití ultrazvuku v medicíně spadají do 30. let 20. století a pojednávají o možných důsledcích působení ultrazvuku na lidský organismus. Hlavní význam pro lékařství měla na počátku 40. let 20. století práce amerického vědce F. A. Firestone, který stál u zrodu ultrazvukového odrazového defektoskopu, jakožto metody nedestruktivního průkazu vad materiálu používané v průmyslu a pracující na principu impulzní odrazové metody. První ultrazvukové diagnostické přístroje vyvinuté v 50.

Zemanová M.

Oční klinika FN a LF MU, Brno, přednosta prof. MUDr. Eva Vlková, CSc.

Autorka práce prohlašuje, že vznik i téma odborného sdělení a jeho zveřejnění není ve střetu zájmu a není podpořeno žádnou farmaceutickou firmou.

Do redakce doručeno dne 2. 5. 2016 Do tisku přijato dne 26. 7. 2016

MUDr. Markéta Zemanová Oční klinika FN a LF MU Brno Jihlavská 20 625 00 Brno e-mail: marketa.zemanova@fnbrno.cz

letech 20. století na základě poznatků z oboru průmyslové defektoskopie využívaly historicky nejstarší zobrazení A. Začaly se uplatňovat především v oftalmologii a neurologii [12, 17, 23]. V roce 1942 vídeňský neurolog a psychiatr K. T. Dussik publikoval své poznatky o možnosti využití ultrazvuku při diagnostice tumorů mozku a první výsledky využití vysokofrekvenčních mechanických vibrací jako diagnostického nástroje [9, 10]. Zmiňovanou metodu pak zavedli do lékařské praxe lékaři G. D. Ludwig a F.W. Struthers, kteří poprvé publikovali práci zmiňující ultrazvukový odraz od cizích těles a žlučových kamenů v lidském těle [15]. Ke konci 50. let byly vyrobeny první diagnostické přístroje využívající dvojrozměrné zobrazení B. Spolu s odrazovou metodou se postupně rozvíjela i metoda založená na Dopplerově principu sloužící k detekci pohybu tkání a měření rychlosti toku krve. Tento princip popsal prvně v roce 1842 rakouský fyzik Ch. A. Doppler [8]. Jakýmsi symbolickým završením této etapy je práce F. E. Barbera a spolupracovníků, vydaná v roce 1974, v níž je definován duplexní systém spojující výhody obou ultrazvukových modulů, tj. dvojrozměrného zobrazení B a měření dopplerovského signálu od proudící krve [1]. Stěžejní výzkum a vývoj ultrazvukových diagnostických přístrojů probíhal především v Anglii, Austrálii, Německu a USA, od 70. let i v Japonsku. O využití ultrazvuku v oftalmologii poprvé referují v roce 1956 Hughes a Mundt, kteří mimo jiné prokazují mimořádný diagnostický přínos zobrazení A u nitroočních tumorů [18]. Dvourozměrné zobrazení B v reálném čase a imerzní metodu zobrazení zavádějí v oftalmologii Baum a Greenwood koncem 50. let 20. století [17, 23]. V roce 1972 Bronson zavádí kontaktní způsob vyšetření, čímž umožňuje širší využití zobrazení B v oftalmologii. Zobrazení předního segmentu oka začíná v 90. letech 20. století zavedením vysokofrekvenčního ultrazvukového biomikroskopu umožňujícího in vivo pozorování struktur přední oční komory [17, 23]. U nás má studium ultrazvuku dlouhou tradici. První vědecké práce o biologických účincích ultrazvuku na rostlinný materiál počátkem 40. let publikovali významní brněnští lékaři a vědci (Herčík, Šprindrich, Hrdlička) [13]. O technických i biologických účincích ultrazvuku v naší literatuře pojednává Šimonová Čeřovská [21]. Tradici biofyzikálního výzkumu účinků ultrazvuku pak převzal nynější biofyzikální ústav lékařské fakulty Masarykovy university v Brně, přičemž nejlepších výsledků dosáhl kolektiv vedený profesorem Hrazdirou, který je uznávaným odborníkem ve studiu biologických účinků ultrazvuku. V oblasti očního lékařství nelze opomenout profesora Vanýska, který v roce 1955 poukázal na možnosti detekce cizích nitroočních těles pomocí vysokofrekvenčního ultrazvuku a jeho blízkou spolupracovnici asistentku Preisovou, se kterou vytvořili řadu českých i zahraničních publikací [24, 25]. Historie elastografie se datuje k počátku 80. let 20. století, název metody poprvé použili v roce 1991 Ophir a jeho spolupracovníci [17, 23].

Ultrazvuk je mechanické (akustické) vlnění neboli kmitání částic prostředí kolem rovnovážné klidové polohy. Toto vlnění se šíří v pružném prostředí s frekvencí vyšší než je horní hranice slyšitelnosti lidského ucha – tj. frekvencí vyšší než 20 kHz (kiloHerzt), přičemž oblast slyšitelného zvuku je v rozmezí 20 Hz – 20 kHz (Hz = 1 kmit/s). Pro diagnostické účely se používají frekvence kolem 2-40 MHz (megaHertz), v oftalmologii pak 8–20 MHz. Ultrazvukové kmity se tkáněmi šíří formou vlnění převážně podélného (v měkkých tkáních a tekutinách), méně často formou vlnění příčného (např. v kostech). Zdrojem ultrazvukových kmitů jsou elektricky buzené piezoelektrické měniče. Základem ultrazvukového vyšetření je princip odrazu ultrazvukových vln na rozhraní prostředí s různou akustickou impedancí. Každé prostředí je charakterizováno základními parametry, jakými jsou rychlost šíření ultrazvuku (tzv. fázová rychlost, závislá na frekvenci ultrazvukových vln), akustická impedance, útlum a odraz. Akustickou impedanci prostředí vypočítáme jako součin hustoty prostředí a fázové rychlosti šíření ultrazvuku. Množství akustické energie, které se odrazí na akustickém rozhraní, je funkcí rozdílu akustických impedancí tkání na tomto rozhraní. Útlum signálu je závislý na kmitočtu a hraje roli při volbě frekvence. Diagnostická informace je následně získána zachycením, zpracováním a zobrazením odražených signálů od tkáňových rozhraní. Rozeznáváme dva hlavní typy ultrazvukového zobrazení. Zobrazení A (Amplitude modulated – odrazy modulující amplitudu výchylek, A-scan) značí jednorozměrný, lineární způsob zobrazení ve směru vyslaných ultrazvukových vln. Impulzy od jednotlivých tkáňových rozhraní jsou na obrazovce registrovány jako vertikální výchylky, tzv. echa. Časová základna značí dobu průchodu impulzu, vzdálenost výchylek odpovídá poměru skutečných vzdáleností jednotlivých tkáňových rozhraní a místu odrazu, amplituda odpovídá množství odražené energie. Jedná se o nejjednodušší typ ultrazvukového obrazu používaný v oftalmologii především k měření biometrie. Zobrazení B (Brightness – jas = zachycené odrazy modulují jas stopy na obrazovce, B-scan) je dvojrozměrné zobrazení, které můžeme dělit na 3 typy: Starší typ tzv. statické zobrazení B (obraz vznikal velmi pomalu ručním posunem a nakláněním sondy tvořené jedním měničem), které nezachytilo pohyblivé struktury ani vnitřní strukturu tkání či orgánů. Zobrazení M (původně TM, využívající i zobrazení A k zachycení pohyblivých struktur jako tzv. plovoucí echa) a v současnosti výhradně používané dynamické zobrazení B, při kterém se vytváří postupná série obrazů vyšetřované oblasti včetně sledování pohybu. Dynamické zobrazení poskytuje díky rychlému snímání odrazů a široké stupnice šedi základní informace o odrazivosti jednotlivých tkáňových struktur [6, 12].

Elastografie představuje zobrazovací modalitu využívající přednosti ultrazvuku ke zjištění rozdílu v mechanické **tuhos-**ti (elasticitě) tkání. Tato neinvazivní diagnostická metoda nahrazuje tradiční palpační vyšetření nezbytné a standardně používané při klinickém fyzikálním vyšetření pacienta. Palpace nám pomáhá v diagnostice a screeningu patologií a kvalitativně určuje tuhost tkáně, má však své limity, protože není vždy dobře proveditelná pro nepřístupnost lézí vzhledem k jejich poloze v hloubce či jejich malé velikosti. Tkáňová ultrazvuková elastografie analyzuje elasticitu tkání díky generování nízkofrekvenčních vibrací, které vyvolají pnutí ve tkáni, a to je následně analyzováno. Elastografie zkoumá odezvu tkání na silové působení [5, 16].

Shear-wave elastografie (SWE) je novým ultrazvukovým konceptem, který zobrazuje elastické vlastnosti tkání, zvy-

šuje specificitu ultrazvukového vyšetření a tím zlepšuje diagnostickou jistotu. Je to metoda nezávislá na subjektivních schopnostech vyšetřujícího a jedná se o kvantitativní zhodnocení (na rozdíl od kvalitativního hodnocení při palpaci). Metoda je založena na automatickém generování přechodné příčné vlny (shear waves) a opírá se o fakt, že změna mechanických vlastností tkáně (především změna tuhosti) je často odrazem patologických procesů. Tuhost tkáně lze nejjednodušeji popsat Hookeovým zákonem, kde konstantou úměrnosti je fyzikální veličina zvaná Youngův modul pružnosti (elasticita – E) udávaná v jednotkách tlaku (kiloPascal – kPa). Youngův modul pružnosti je definován jako poměr mezi kompresí (= deformačním napětím, vnějším homogenním stlačením – S) a vyvolaným pnutím (= deformací tělesa – e): E = S/e [kPa]. Čím vyšší je Youngův modul pružnosti, tím je tkáň tužší, a naopak. Shear waves neboli příčné (střižné) vlny jsou mechanicky vyvolány po kompresi tkáně. Ve tkáních se šíří v příčném směru vytvářením tangenciální klouzavé síly mezi jednotlivými vrstvami tkáně rychlostí 1–10 m/s. Jsou tedy mnohem pomalejší než tlakové (tzv. bulk) vlny, které jsou základem standardního ultrazvukového obrazu a šíří se velmi rychle (rychlostí cca 1500 m/s) postupným stlačením vrstev tkáně. Příčné vlny jsou odezvou elastického odporu tkáně na mechanické vibrace s nízkou frekvencí (50–200 Hz). Můžeme-li změřit rychlost šíření (c) příčné vlny a přitom víme, že hustota tkání (9) je konstantní, můžeme přímo vyjádřit elasticitu tkáně (E) podle vzorce: $E = 3 \ 9c^2$. Přítomnost střižných vln tedy souvisí s elasticitou daného prostředí. Kapalina nemá elasticitu, ale v tuhém a pevném prostředí se střižné vlny dobře šíří. Je-li tedy prostředí elastické, můžeme vypočítat rychlost šíření střižné vlny. Elasticita tkání se liší v důsledku patologických procesů, a to tak, že maligní ložiska většinou vykazují větší tuhost (30–270 kPa) než ložiska benigní (1–70 kPa) či zdravá tkáň. Přitom hustota tkání (§) v lidském těle je relativně konstantní, blízká hustotě vody (1000 kg/m³) [3, 5, 16]. Hodnoty elasticity určitých lidských tkání byly vyhodnoceny s použitím kalibrovaných fantomů s odlišnou elasticitou či jsou výsledkem klinických studií (tab. 1).

Klasifikace elastografie: Statická (kompresní) elastografie využívá homogenního stlačení povrchu těla (stlačení provádí vyšetřující), které vyvolá deformaci tkáně a ta se nám ukáže v zobrazované rovině. Youngův modul pružnosti zde nelze použít, protože neznáme pnutí v tkáni. Neposkytuje kvantitativní informaci, je velmi závislá na schopnostech vyšetřujícího a špatně opakovatelná. **Dynamická elastografie** je základem magnetické rezonance (MRI) a využívá spojité vibrace. Pro vyjádření elasticity jsou analyzovány stojaté vlny indukované v těle. Zobrazovaná oblast však není v reálném čase. **Elastografie založená na příčném vlnění (shear wave)** využívá přechodné pulzy, které v těle generují příčné vlnění. Elasticita tkáně je zde přímo vyjádřena měřením rychlosti šíření vlny. Poskytuje kvantitativní a lokální informace o elasticitě tkáně v reálném čase [3, 5, 16].

	typ tkáně	E (kPa)	9 (kg/m³)
prsní tkáň	tuk	18-24	
	normální žláza	28-66	
	cysta	0-53	
	fibrózní tkáň, fibroadenom	96-244	
	karcinom	22-560	
prostata	norm. přední část (anterior)	55-63	1000 ± 8 % (voda)
	norm. zadní část (posterior)	62-71	
	benigní hyperplazie	36-41	
	karcinom	96-241	
	zánětlivá ložiska	20-27	
štítná žláza	parenchym	5-40	
	thyreoiditis	15-55	
	folikulární karcinom	6-59	
	karcinom	7-202	
ledviny	fibróza	10-55	
játra	normální jaterní tkáň	0,4-6,0	
	cirhóza	15-100	
šlacha		800	
tepna		700-3000	
chrupavka		790	
zubní sklovina		20 000 000-84 000 000	

Tab. 1 Hodnoty elasticity vybraných lidských tkání

Zdroj: [15]

Klasifikace elastografie na čtyři generace: První generace ("manuální strain-stress") využívá rytmického tlaku sondy manuálně, kdy kompresi a uvolnění tkáně provádí vyšetřující rukou na tkáň vyšetřovaného. Určí elasticitu tkáně na základě rozdílu ultrazvukového signálu před a po kompresi, porovnává za sebou jdoucí snímky (resp. jejich jednotlivé body - pixely) a ve zvolené oblasti zájmu (region of interest – ROI) se počítají vzájemné vzdálenosti těchto obrazů. Následné barevné kódování zobrazí kvalitativní informace o elasticitě. Více stlačitelné oblasti tkáně tj. více elastické jsou zbarveny do modra, méně stlačitelné – tužší oblasti do červena. Metoda je závislá na zručnosti a zkušenosti vyšetřujícího, je zatížena množstvím artefaktů, není kvantitativní ani dobře reprodukovatelná. Druhá generace je citlivější. Využívá rytmickou kompresi tkáně způsobenou vlastním tělem vyšetřovaného (dechové exkurze, pohyb srdce). Následné zpracování signálu je stejné jako u 1. generace. Hodnocení elasticity tkáně je ale špatně reprodukovatelné. Je vhodná pro hodnocení útvarů prsů, štítné žlázy apod. Třetí generace využívá metodu Acoustic Radiation Forced Impulse Elastography (ARFI). Jedná se o dva způsoby využití. Prvním způsobem ARFI je Virtual Touch Tissue Imaging využívající opět manuální typ zobrazení. Deformace je vyvolána automaticky velmi výkonným akustickým im pulzem elektronické sondy, nikoliv manuálně. ARFI je používána především pro vyšetřování jater a hlouběji uložených měkkých tkání. Výsledkem je kvalitativní hodnocení relativní tuhosti tkáně ROI ve stupnici šedi (světlé oblasti = měkká tkáň, tmavé oblasti = tužší tkáň). Druhým způsobem ARFI je Virtual Touch Quantification shear wave elastography, při které silný akustický im pulz vyvolá šíření příčné vlny zvolenou, velmi malou ROI. Vyšetřující inicializuje standardní (podélné, axiální) ultrazvukové měření rychlosti příčné vlny v m/s, jejíž střední hodnota v m/s se objeví na displeji. Hodnota je kvantitativně úměrná průměrné elasticitě tkáně v této ROI. Pro dosažení reprodukovatelnosti výsledku je třeba cca 10 následných měření a jejich zprůměrování, nejedná se o dynamický mód ale o jednotlivá statická měření. Není vytvářena mapa elasticity.

Čtvrtá generace tzv. dynamická, real time Shear Wave Elastography (SWE) je patentově chráněná u MultiWave sonografu-elastografu Aixplorer (SuperSonic Imagine, Francie). Standardní širokopásmová sonda je zdrojem vibrací a generuje pulzy akustického tlaku vytvořené fokusovaným ultrazvukovým paprskem, které jsou fokusované do různých hloubek tkáně supersonickou rychlostí. Akustický tlak (tzv. akustický vír) indukovaný v ultrazvukovém svazku vybudí pod sebou ležící tkáně a působí na tkáň ve směru šíření. Tkáň

Obr. 1 Šíření shear waves

Zdroj: [15]

však klade tomuto tlaku odpor (obnovující sílu) a ten dále indukuje mechanické vlny a příčné vlnění (shear waves), které se v dané tkáni šíří transverzálně (obr. 1). Toto příčné vlnění je však velmi slabé a jeho útlum je patrný již po několikamilimetrovém šíření. Technologie SonicTouch™ tento nežádoucí jev eliminuje, neboť pracuje na principu excitačního jevu, a to díky postupnému fokusování ultrazvukových svazků do různé hloubky tkáně. Zesiluje (koherentně sumuje) příčné vlny do tvaru tzv. Machova kuželu, tím zvyšuje amplitudu příčných vln a vzdálenost jejich šíření, při současné minimalizaci akustického výkonu na bezpečnou úroveň. Více fokusačních zón paprsku umožňuje vyvolat vznik příčných vln ve více hloubkách. Příčné vlny se ve tkáních šíří rychlostmi 1-10 m/s (odpovídá elasticitě 1–300 kPa), z toho vyplývá, že rovinou zobrazenou ultrazvukem a širokou 3–6 cm projdou za 12–20 ms. Takto by však příčné vlny během doby potřebné k vytvoření jednoho snímku vymizely a nebyly by systémem zachyceny. Proto jsou nutné pro správné zachycení příčných vln s dostatečnými detaily snímkové frekvence v řádech několika tisíců snímků za sekundu. Tyto ultrarychlé snímkovací frekvence jsou v přístroji Aixplorer pojmenovány jako Ultrafast[™] zobrazení, které vysílá v jednom jediném okamžiku rovinné ultrazvukové vlny do tkáně pro vybuzení celé zobrazované roviny. Maximální snímkovací frekvence je pak ovlivněna časem, za který ultrazvuková vlna urazí dráhu ze sondy do tkáně a zpět (např. pro typický mamologický obraz 4 cm do hloubky je maximální dosažitelná frekvence 20 kHz). Toto velmi vysoké pulzní opakování frek-

Tab. 2	Barevné	kódo	ván	í
--------	---------	------	-----	---

Barevné kódování modrá barva kóduje za standardních podmínek	shear vawes se šíří	solidní tkáně tekutina s detritem
Černá barva či odstíny šedi	žádné shear waves se nešíří	tekutina
	velmi slabý signál shear waves	velmi tenké solidní tkáně
	velmi rychlá propagace shear waves	velmi tvrdé (tuhé) solidní tkáně

Zdroj: [15]

vence (pulse repetition frequency – PRF) pracuje v závislosti na hloubce a rychlosti ultrazvuku a závisí na typu tkáně. Díky Ultrafast[™] zobrazení jsme schopni detailně sledovat šíření příčných vln zobrazovanou rovinou, které indukují malé posuvy tkáně a ty jsou zaznamenány a kvantifikovány podobně jako při Dopplerovském zobrazení. Rychlost šíření příčných vln je závislá na elasticitě tkání. V celé ROI snímá příčné vlny, kvantitativně zobrazí výslednou mapu rychlostí a obraz elasticity tkáně v kPa, který se kontinuálně obnovuje v reálném čase. Rychlost zpracování dat je velmi vysoká (několik Gbyte/s). Metoda se provádí užitím konvenční lineární, konvexní resp. intrakavitální sondy [3, 4, 5, 16].

Výstupem SWE je ultrazvukový obraz B-mode překrytý barevně kódovanou mapou, kdy každému bodu tkáně je přiřazena barva, která kóduje jeho elastické vlastnosti. Výsledná mapa elasticity nám zobrazuje uskutečněné posunutí jednotlivých tkáňových struktur podle jejich mechanických vlastností. Barevné kódování obrazu (tab. 2) je ve škále červené až modré, kdy tužší tkáně jsou vykresleny teplými odstíny (červeně, žlutě) a měkčí tkáně studenými barvami (modře, fialově). V barevných mapách je modrá barva standardním měřítkem a je jí vykreslena měkká solidní tkáň či viskózní tekutina v cystách. Červeně a žlutě je vykreslena tuhá tkáň (malignita). Černé výpadky či různé odstíny šedi znamenají ztrátu signálu shear wave a značí čistou tekutinu např. v cystě (příčné vlny se tu nešíří) či tuhou tkáň (příčné vlny jsou velmi slabé, jsou tlumeny nebo rychle propagovány do okolí). Rozlišovací schopnost obrazu je kolem 1 mm. Při každém měření je nutno posečkat kolem 3 sekund na to, aby se obraz SWE (obr. 2, 3) zastabilizoval a teprve poté můžeme obraz zmrazit a hodnotit [3, 4, 5, 16].

Obr. 2 SWE obraz vybraných tkání Zdroj: [15]

Obr. 3 SWE obraz – barevné kódování, hodnoty elasticity

DISKUSE

Postupně se napříč lékařskými obory vytvářejí standardy hodnot elasticity (pružnosti) lidských tkání, jako je prsní žláza, játra, prostata či štítná žláza. Studuje se zobrazování povrchového muskuloskeletálnho systému, oblast rekta, a i v dalších oblastech medicíny jako je kardiologie se SWE začíná výrazně prosazovat. Hlavní studie z roku 2011 a 2012,

Tab. 3 Elasticita štítné žlázy

Elasticita patologií štítné žlázy (kPa)				
	Studie ECR 2011 (Francie)	Studie endokrinol. 2010		
Normální thyreiodální tkáň	31±12	15,9±7,6		
Benigní thyreoidální uzly	34±17	36,0±30,0		
Maligní thyreoidální uzly	114±61	150,0±95,0		

Zdroj: [20]

které poskytly základní data o elasticitě lidských tkání a staly se průlomové, jsou studie z hepatologie [11], urologie [2], a onkologie prsu [14].

V oblasti mamologie je studiemi prokázáno, že obrazy SWE jsou často lepší, než pouhý modul B-scan. SWE zlepšuje identifikovatelnost patologických lézí, což vede k lepší specificitě vyšetření a redukci počtu zbytečných biopsií. Z proběhlých studií se dovídáme, že při rozhodování v indikaci biopsie suspektního ložiska v prsní tkáni nám pomáhá tzv. maximální hodnota změřené elasticity. Pokud je hodnota menší nebo rovna 80 kPa (Emax ≤ 80 kPa) je málo pravděpodobné, že se jedná o maligní tumor a biopsii bychom měli obezřetněji zvažovat. Naproti tomu při hodnotách Emax ≥ 160 kPa by měla být biopsie již provedená dříve a diagnostický postup by měl korelovat s nálezem [14].

V hepatologii SWE slouží v monitorování stupně jaterní cirhózy, při plánování pacientů čekající na transplantaci jater i při posuzování stavu transplantovaného orgánu. SWE poskytuje časově reálné kvantitativní zmapování jaterní elasticity spolu s real-time B-modem, a tím zlepšuje posouzení stadií fibrózy (FO–F1, F2–F4). Při odlišení stadia fibrózy již víme, že stupeň F2 (signifikantní fibróza) má hodnotu elasticity do 7,1 kPa, stadium F3 (pokročilá fibróza) do 8,7 kPa a stadium F4 (cirhóza) 10,4 kPa, přičemž senzitivita a specificita vyšetření SWE je vyšší než 90 % [11].

V oboru urologie má SWE prvotní postavení v brzké detekci a excelentní charakterizaci uzlů prostaty. Dle Barrovy studie provedené v roce 2013 na celkem 53 pacientech, se u 11 pacientů detekovaly pomocí SWE maligní fokusy potvrzené následně biopsií. Díky této studii se určily hodnoty elasticity od zánětlivých oblastí přes benigní hyperplazie až po maligní ložiska ve smyslu karcinomu. SWE by se tak mohla stát screeningovou metodou první linie pro karcinom prostaty [2].

V endokrinologii tab. 3 SWE pomáhá určovat přesnou diagnózu při nalezení uzlu ve štítné žláze. Z dostupných studií již víme, že maligní uzly štítné žlázy mají větší tuhost než-li afekce benigní. Toto zvýšení tuhosti je v případě maligního uzlu ve srovnání s normálním parenchymem či benigními uzly signifikantně významné. Normální thyreoideální tkáň má hodnoty elasticity 31 ± 12 kPa, přičemž maligní uzly vykazují čtyř- až pětinásobné zvýšení elasticity (tab. 3). Přesto se zatím jedná pouze o malý soubor pacientů, který otevírá další možnosti využití SWE v klinické praxi [20].

V oftalmologii v dnešní době probíhají mezinárodní studie, které by v budoucnu mohly v některých případech nahradit ekonomicky nákladné a pacienta zatěžující zobrazovací diagnostické metody. SWE se již nyní zdá být příslibem v diagnostice a posuzování změn okohybných svalů a tkání orbity u pacientů s endokrinní orbitopatií (obr. 4) ve srovnání se zdravou populací (obr. 5). Elastické vlastnosti zevních okohybných svalů u pacientů s endokrinní orbitopatií (EO) jsou změněny např. díky fibrotickým změnám v konečném důsledku choroby. Tkáň se tak stává více tuhou (v barevné mapě je vykreslena teplými odstíny), což dokazují nálezy u prvních vyšetřených pacientů. Při zatím velmi skromném klinickém testování této metody můžeme předpokládat, že změna elasticity zevních očních svalů je v korelaci s aktivitou této chronické choroby. Po dostatečně velkém a reprezentativním souboru pacientů s EO budeme schopni určit výtěžnost metody a její zařazení do diagnostického algoritmu u nás v ČR. Domníváme se též, že

Obr. 4 SWE obraz okohybných svalů u endorinní orbitopatie

Obr. 5 SWE obraz okohybných svalů u zdravého člověka

Obr. 6 SWE obraz pseudotumoru očnice

SWE může pomoci v diagnostice intraokulárních a intraorbitálních tumorů (obr. 6).

V literatuře [7] jsou dostupná data řeckých autorů srovnávající ultrazvukové obrazy horizontálních okohybných svalů (m. rectus lateralis, m. rectus medialis) a jejich rozdílnou elasticitu v primárním postavení a v addukci či abdukci. Další možností jak využít skvělých vlastností SWE se může zdát problematika diferenciální diagnostiky myositid a jiných orbitálních afekcí [7].

Tým francouzských vědců publikoval práci [22] dokumentující změny mechanických vlastností rohovky po stabilizačním zákroku corneal cross-linking (CXL). Práce pojednává o vlivu tloušťky a tuhosti rohovky na měření a korelaci nitroočního tlaku a přibližuje snahu porozumět ektatickým onemocněním rohovky jako je např. keratokonus apod. Při studii ex vivo na čerstvě enukleovaných prasečích očích bylo pomocí konvenční 15 MHz lineární sondy zjištěno, že rohovka má téměř homogenní tuhost (elasticitu) v průměru 190 ± 32 kPa. Po stabilizační léčbě CXL byla elasticita rohovky signifikantně změněna, Youngův modul pružnosti vzrostl v předních částech rohovky – tj. právě tam, kde zákrok provádíme - na průměrné hodnoty 890 ± 250 kPa (což značí 460% nárůst). Tato technika by tedy mohla být perspektivní v této problematice [19, 22].

ShearWave[™] Elastografie je výsledkem zkoumání příčné vlny a poskytuje kvantitativní informace o elasticitě lidských tkání skenovaných v reálném čase. SWE je schopna velmi přesně lokalizovat a zobrazovat elasticitu malých lézí s milimetrovým rozlišením. Poskytuje na vyšetřujícím nezávislé a reprodukovatelné zobrazení díky plně automatickému a efektivnímu generování příčných vln z ultrazvukové sondy technologií SonicTouch[™] bez zvyšování akustického výkonu. Obraz se vytvoří kombinací radiálního tlaku indukovaného ve tkáni ultrazvukovým svazkem a ultrarychlého zobrazení sekvence schopné zachytit v reálném čase šíření takto vyvolaných příčných vln. Platforma SonicSoftware™ umožňuje akvizici ultrazvukových obrazů na ultra-rychlých snímkovacích frekvencích (100 až 200krát rychlejších než na konvenčních systémech) pro zachycení šíření příčných vln a měření elasticity tkání v kPa. SWE redukuje složitost a trvání vyšetření a nabízí možnost srovnávání a snadné analýzy obrazů. Mezi klinické benefity SWE patří velmi vysoká reprodukovatelnost díky akvizici SWE map, vysoká spolehlivost měření velikosti a elasticity lézí a obecně vysoká senzitivita i specificita ve srovnání s konvenčními ultrasonografickými vyšetřeními. SWE přináší nové a zatím ne zcela probádané možnosti do klinické praxe. Nevýhodou SWE je zejména větší technologická náročnost a vyšší pořizovací cena zařízení [3, 4, 5, 16].

ZÁVĚR

Shear waves elastografie je nová neinvazivní diagnostická zobrazovací metoda, která mapuje elastické vlastnosti tkání a nabízí tři hlavní inovace: kvantitativní aspekt, prostorové rozlišení a schopnost zobrazení v reálném čase. Výstupem vyšetření je ultrazvukový obraz B-mode překrytý barevně kódovanou mapou. V oftalmologii se již nyní zdá být perspektivní v diagnostice a posuzování změn okohybných svalů a tkání orbity u pacientů s endokrinní orbitopatií. Určení výtěžnosti metody a její zařazení do diagnostického algoritmu je zatím otázkou a úkolem probíhajících klinických studií.

LITERATURA

- Barber, F. E. et al.: Ultrasonic Duplex Echo-Doppler Scanner. IEEE Trans. On Biomedical Engineering, 1974, 21(2): 109-113, doi: 10.1109/TBME.1974.324295. ISSN 0018-9294.
- Barr, R.G., Memo, R., Schaub, C.R.: Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q [online]. 2012 Mar [cit. 2016-04-02], 28(1): 13-20, doi: 10.1097/ RUQ.0b013e318249f594. ISSN (online) 1536-0253.
- Bercoff, J.: ShearWave[™] Elastography. SuperSonic Imagine The Theragnostic Company[™] [online]. France: Aix en Provence, 2008 [cit. 2016-04-02], dos-

tupné na www: http://nimmoed.org/ wp-content/uploads/2012/05/Super-Sonic_Imagine_-_27v1_-_White_Paper_UK_-_Electronic_version.pdf.

- Bercoff, J.: Ultrafast Ultrasound Imaging, Ultrasound Imaging – Medical Applications, INTECH Open Access Publisher [online]. 2011 [cit. 2016-04-02], doi: 10.5772/19729.
- Bercoff, J., Tanter, M., Fink, M.: Supersonic shear imaging: A new technique for soft tissues elasticity mapping. IEEE Trans. Ultrason. Ferroelecr., Freq. Control [online]. 2004 [cit. 2016-04-02], 51(4): 396-409, doi: 10.1109/TUFFC.2004.1295425. ISSN 0885-3010.
- Biofyzikální ústav LF MU: Ultrazvuková diagnostika [online]. Projekt FRVŠ 911/2013, s. 58 [cit. 2016-04-02]. dostupné na www: www.med.muni.cz/ biofyz/zobrazovacimetody/files/Ultrazvuk.pdf
- Detorakis, E.T. et al.: Real-time ultrasound elastographic imaging of ocular and periocular tissues: a feasibility study. Ophthalmic Surg Lasers Imaging [online]. 2010 [cit. 2016-04-02], 41(1): 135-141, doi: 10.3928/15428877-20091230-24. ISSN (online) 1938-2375.
- 8. Doppler, Ch.: Christian Doppler: Leben und Werk, der Dopplereffekt. Salzburg: Amt d. Salzburger Landesre-

gierung, Landespressebüro, 1988. ISBN: 3850150690.

- Dussik, K.T.: On the possibility of using ultrasound waves as a diagnostic aid. Neurol. Psychiat, 1942; 174: 153–168.
- **10.** Dussik, K.T.: Uber die moglichkeit hochfrequente mechanische schwingungen als diagnostisches hilfsmittel zu verwerten. Neurol Psychiat, 1942; 174: 153.
- Ferraioli, G., Tinelli, C., Dal Bello, B. et al.: Accuracy of real-time shear wave elastography in the assessment of liver fibrosis in chronic hepatitis C: A pilot study. Hepatology [online], 2012 [cit. 2016-04-02], 56(6): 2125–2133, doi: 10.1002/hep.25936. ISNN (online) 1527-3350.
- Hrazdira, I.: Úvod do ultrasonografie v otázkách a odpovědích pro studenty lékařské fakulty [online]. Brno: Klinika zobrazovacích metod LF MU, Fakultní nemocnice u Sv. Anny v Brně, 2008 [cit. 2016-04-02], ISBN 978-0471382263. Dostupné na www: http://www.med. muni.cz/dokumenty/pdf/uvod_do_ultrasonografie1.pdf.
- Herčík F., Hrdlička M., Šprindrich J.: Biologický účinek ultrazvuku. Sborník lékařský 68, 1942.
- 14. Kim, H., Youk, J. H., Gweon, H. M. et al.: Diagnostic performance of qualitative shear-wave elastography accor-

ding to different color map opacities for breast masses. Eur J Radiol [online], 2013 [cit. 2016-04-02], 82(8): 326-331, doi: 10.1016/j.ejrad.2013.03.007. ISSN 0720-048X.

- **15.** Ludwig, G.D., Struthers, F.W.: Detecting gallstones with ultrasonic echoes. Electronics, 1950, 23: 172-178.
- 16. Medata: Supersonic Imagine The Theragnostic Company[™]. Teoretické základy a principy ShearWave[™] Elastografie [online]. Brno: Medata spol. s.r.o. [cit. 2016-04-02], Dostupné na www: http:// www.medata.cz/_docs/cz_supersonicimagine-swe_teorie.pdf
- 17. Mornstein, V., Pospíšilová, J.: Ultrazvuk - jeho historie ve světě a u nás. Lékař a technika [online]. Praha: ČLS JEP, 1995 [cit. 2016-04-02], 26(5): 115-118, ISSN 0301-5491. dostupné na www: http:// www.med.muni.cz/~vmornst/ultrazv. htm
- Mundt, G.H., Hughes, W.F.: Ultrasonics in ocular diagnosis. Am J Ophthalmol, 1956; 41(3): 488–98.
- Nguyen, T.M., Aubry J.F., Touboul D. et al.: Monitoring of Cornea Elastic Properties Changes during UV-A/Riboflavin-Induced Corneal Collagen Cross-Linking using Supersonic Shear Wave Imaging: A Pilot Study Monitoring of Corneae Elastic Property Changes, Invest Ophthalmol Vis Sci [online], 2012 [cit. 2016-04-02],

53 (9): 5948-5954, doi: 10.1167/iovs.11-9142. ISSN 0146-0404.

- 20. Sebag, F. , Vaillant-Lombard, J., Berbis, J. et al.: Shear Wave Elastography: A New Ultrasound Imaging Mode for the Differential Diagnosis of Benign and Malignant Thyroid Nodules. J Clin Endocrinol Metab. [online], 2013 [cit. 2016-04-02], 95(12): 5281-8, doi: 10.1210/ jc.2010-0766. ISSN (online): 1945–7197.
- 21. Šimonová-Čeřovská, J.: Ultrazvuk a jeho užití v praxi. Praha: Elektrotechnický svaz českomoravský. 1941, s. 141.
- Tanter, M., Touboul, D., Gennisson, J.
 L. et al.: High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans Med Imaging [online]. 2009 [cit. 2016-04-02], 28(12): 1881-1893, doi: 10.1109/ TMI.2009.2021471. ISSN (online) 1558-254X.
- 23. Tsung, J: History of Ultrasound and Technological Advances. New York, USA [online]. [cit. 2016-04-02]. Dostupné na www: wcume.org/wp-content/ uploads/.../Tsung.pdf.
- 24. Vanýsek, J., Preisová, J., Obraz, J.: Ultrasonography in Ophthalmology. London, England: Butterworths, 1969.
- 25. Vanýsek, J., Preisová, J., Paul, M.: Ultrasonic image of the anterior eye segment by TAU and SIMU. Ophthalmic Ultrasound, 1969, 213–217.