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Nekódující RNA –  typy, základní 
funkce a nomenklatura
Lidský genom je „zapsán“ ve struktuře deoxy-

ribonukleové kyseliny (DNA) a jeho základní 

stavební a funkční jednotky označujeme jako 

geny. Geny jsou dennodenně aktivně přepiso-

vány do molekul ribonukleové kyseliny (RNA) 

a v procesu proteosyntézy slouží jako matrice 

pro vznik proteinů –  tímto způsobem jsou však 

přepisovány pouze 1– 3 % genů, které označu-

jeme jako tzv. protein-kódující geny [1]. Dříve 

se odborníci domnívali, že zbytek genomu je 

„nadbytečný“ –  označovali jsme jej jako „junk 

DNA“ [2]. Nové metody molekulární bio logie 

umožňující studium transkriptomu (tj. všech 

přepisovaných RNA v buňce) však ukazují, že 

až tři čtvrtiny genomu jsou aktivně přepiso-

vány [1] a že většina z těchto RNA neslouží 

jako matrice pro vznik bílkovin, nýbrž má re-

gulační funkci –  tyto RNA proto označujeme 

jako nekódující RNA.

Nekódující RNA plní v buňce celou řadu 

regulačních funkcí. Dle délky rozlišujeme 

dlouhé nekódující RNA (long non-cod ing 

RNA –  lncRNA; > 200 nukleotidů délky) 

a malé nekódující RNA (small non-coding 

RNA –  sncRNA) [3]. Malé nekódující RNA jsou 

značně heterogenní skupinou zahrnující např. 

malé nukleární (jaderné) RNA (small nuclear 

RNA –  snRNA), které se podílejí na zrání mRNA 

a jejím sestřihu a mají délku okolo 150 nukleo-

tidů [4], malé nukleolární (jadérkové) RNA 

(small nucleolar RNA –  snoRNA), které se v ja-

dérku podílejí na dozrávání ribozomální RNA 

(rRNA) nezbytné pro vznik ribozomů a pro-

teosyntézu a mají délku cca 70– 120 nuk-

leotidů [5], RNA interagující s  PIWI pro-

teiny (PIWI-interacting RNA –  piRNA) o délce 

24– 32 nukleotidů, které spolu s PIWI pro-

teiny regulují aktivitu transpozonů [6], a v ne-

poslední řadě pak mikroRNA (miRNA, miR) 

o délce cca 21– 24 nukleotidů, které se váží na 

molekuly mRNA a brání jejich překladu do bíl-

kovin [7]. Význam jednotlivých skupin sncRNA 

v regulaci genové exprese začínáme teprve 
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Obr. 1. Základní informace o intracelulárních miRNA.

A) Biogeneze miRNA. Vznik miRNA probíhá většinou kanonickou cestou (střední část obrázku, popis v textu). Některé miRNA, tzv. miRtrony, jsou 

zakódovány v intronech jiných genů – po přepisu daného genu do molekuly primární RNA je pre-miRNA „vystřižena“ v procesu sestřihu s využitím 

spliceozomu (čímž miRtrony obcházejí komplex Drosha/DGCR8). Třetí možnou cestu vzniku reprezentují tzv. agotrony – jedná se o primární tran-

skripty, které zcela obcházejí kanonickou cestu a pomocí jiných mechanizmů jsou nakonec upraveny do podoby maturovaných miRNA.

B) Funkce miRNA. Po svém vzniku jsou zralé miRNA naloženy do miRNA-indukovaného tlumícího komplexu (miRISC) tvořeného proteiny Ago II 

a TRBP. Ago II zralou miRNA rozvine, jedno vlákno se uvolní do cytoplazmy a je degradováno, druhé se poté na podkladě komplementarity naváže 

do 3´ nepřekládané oblasti cílové mRNA, čímž vyvolá její degradaci, nebo ji zablokuje pro přepis do bílkoviny. Tím dochází ke snížení hladin cílo-

vých proteinů.
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miRNA rozvine a jedno vlákno, označované 

jako vedoucí, v miRISC zůstane a druhé je 

z něj uvolněno do cytoplazmy a následně 

degradováno [7].

Vytvořený miRISC je zodpovědný za funkci 

miRNA v tzv. posttranskripční regulaci genové 

exprese (obr. 1B). miRNA mají 21– 24 nukleo-

tidů, avšak jen 2.–8. nukleotid představují tzv. 

seed region, který je zodpovědný za rozpozná-

vání cíle [7]. Rozpoznávání cíle probíhá na pod-

kladě komplementarity bází –  adenin se váže 

s uracilem a guanin se váže s cytozinem (A-U, 

C-G). miRISC cílí na molekuly messengerové 

RNA (mRNA), což jsou prekurzorové protein-

-kódující RNA zodpovědné za vznik proteinů. 

V těchto se nachází tzv. miRNA-response ele-

ment (MRE), typicky v jejich 3’ nepřekládané 

oblasti. Vazba mezi miRISC a cílovou mRNA 

může mít dvojí následek –  způsobí degradaci 

této mRNA (pokud je komplementarita bází 

úplná) nebo miRISC zabrání překladu cílové 

mRNA do bílkoviny –  v obou případech tak 

dojde ke snížení hladiny proteinu, který daná 

mRNA kóduje [7]. Proto hovoříme o negativní 

(= snižuje se hladina proteinu) posttranskripční 

(působí po transkripci, tedy po přepisu DNA 

do mRNA) regulaci.

Regulace miRNA je vysoce komplexní 

a provázaná –  jedna miRNA je schopna cílit 

na více mRNA zároveň a jedna mRNA může 

být regulována celou řadou různých miRNA 

(obr. 2A) [14] nebo se v ní dokonce může na-

cházet více MRE pro jednu a tu samou miRNA 

(např. tři vazebná místa pro miR-1 apod.). 

Na podkladě těchto faktů vznikají vysoce kom-

plexní a propletené sítě, ně kte ré miRNA jsou 

vzájemně abundantní, jiné jsou pro správnou 

funkci buněk nezbytné. Výše popsaným způ-

sobem miRNA jemně dolaďují genovou ex-

presi v konkrétních tkáních s cílem udržet 

jejich správnou funkci a homeostázu nebo 

jsou schopny ji významným způsobem vy-

chýlit při svém nadbytku/ nedostatku, což se 

poté může uplatit při vzniku nemocí. Studie 

z posledních let také ukazují, že miRNA mají 

i řadu dalších funkcí, než jen těch popsaných 

výše, které pro úplnost uvádíme na obr. 2B, 

který byl vytvořen dle textu souhrnného 

článku Catallanoto et al [3].

Extracelulární miRNA 
a jejich funkce
Změny hladin intracelulárních miRNA ovliv-

ňují genovou expresi, mění signalizaci uvnitř 

buněk, a významně tak ovlivňují buněčný me-

tabolizmus, buněčný cyklus či správnou funkci 

Objev, vznik a funkce 
intracelulárních miRNA
První miRNA byla popsána v roce 1993 při 

studiu háďátka obecného [11] a až dalších 

téměř 10 let výzkumu ukázalo, že miRNA jsou 

vysoce evolučně zakonzervované molekuly 

(jejich struktura se mezi jednotlivými živočiš-

nými druhy liší jen velmi málo) a že mecha-

nizmus, kterým miRNA řídí vývoj háďátka, je 

možné najít i u dalších živočišných druhů, vč. 

člověka [12]. Geny pro miRNA jsou rozmís-

těny po celém genomu –  nacházejí se v ob-

lastech intergenních (tedy mezi již známými 

protein-kódujícími geny), ale je možné je najít 

i v intronech a exonech již známých genů 

(tedy v oblastech intragenních) [13]. Když se 

v genomu nacházejí samostatně, mají často 

vlastní promotorové oblasti řídící jejich ex-

presi, nacházejí-li se uvnitř již známých genů, 

je jejich exprese často řízena regulační oblastí 

tohoto genu (tj. miRNA může a nemusí být 

přepisována společně s genem, ve kterém se 

nachází [7]).

Syntéza miRNA je několikastupňový 

proces [7] –  tzv. kanonická cesta syntézy začíná 

přepisem genu pro miRNA z DNA pomocí 

enzymu RNA-polymerázy II do podoby primár-

ního transkriptu zvaného pri-miRNA (primární 

miRNA). Pri-miRNA jsou poměrně dlouhé 

(někdy i nad 2 000 nukleotidů) jednovláknové 

RNA, které mohou sloužit jako prekurzor pro 

více různých zralých (maturovaných) miRNA 

a ještě v jádře dochází k jejich štěpení pomocí 

tzv. mikroprocesorového komplexu (enzymu 

Drosha a jeho kofaktoru DGCR8) na struktury 

zvané pre-miRNA (prekurzorové miRNA). Pre-

kurzorové miRNA mají typickou strukturu vlá-

senky –  jedná se o jednovláknovou RNA, kdy 

jeden konec (3’ konec) je spojen s druhým 

koncem (5’ konec) díky jejich vzájemné kom-

plementaritě, čímž vzniká struktura znázor-

něná na obr. 1A. pre-miRNA jsou následně ex-

portovány z jádra pomocí systému Exportin-5/

/RanGTP a v plazmě dochází k odštěpení ne-

komplementární smyčkové oblasti, čímž vzni-

kají zralé miRNA (celý proces stejně jako alter-

nativní cesty vzniku miRNA jsou znázorněny 

na obr. 1A). Zralá miRNA je dvouvláknová, při-

čemž vlákno pocházející z 3’ konce označu-

jeme jako 3p a vlákno pocházející z 5’ konce 

jako 5p. Obě vlákna jsou následně zavzata do 

tzv. miRNA-indukovaného tlumicího komplexu 

(miRISC); miRISC je tvořen zralou miRNA, pro-

teinem TRBP (trans-activation response RNA-

-binding protein) a typicky argonautovým 

proteinem 2 (Ago2). Ago-2 dvouvláknovou 

odkrývat, avšak zdá se, že tyto molekuly hrají 

klíčové role v rozvoji řady různých nemocí, vč. 

nemocí kardiologických. Se stoupající úrovní 

poznání se nám také otevírají nové postupy, 

jak tyto malé molekuly využít v klinické praxi, 

ať již v dia gnostice či terapii nemocí. V další 

části tohoto souhrnného článku se zaměříme 

na aktuálně asi nejvíce prostudovanou oblast 

sncRNA, tedy na miRNA.

Dle současných odhadů existuje více 

než 30 000 různých miRNA, z nichž více než 

2 000 tvoří jen ty lidské. Údaje o jejich struk-

tuře a funkci jsou shromažďovány v různých 

online databázích; nejznámější je miRbase 

(http:/ / mirbase.org/ ) [8]. S ohledem na počet 

různých miRNA byl vytvořen jednoznačný 

systém jejich pojmenovávání [9,10]; jméno se 

většinou skládá z třípísmenné zkratky miR, ho-

voříme-li o zralých miRNA (viz dále), případně 

z třípísmenné zkratky mir psané kurzívou, 

hovoříme-li o prekurzorech nebo o genech 

pro dané miRNA. Za touto třípísmennou 

zkratkou následuje číslice odrážející pořadí 

jejich objevu –  např. tedy miR-1 byla objevena 

dříve než miR-499; avšak než se tento systém 

pojmenovávání stihl vytvořit, byla již pojme-

nována jedna skupina miRNA, zvaná let (např. 

let-7 apod.), která tak tvoří výjimku z této no-

menklatury. Po číselném označení může násle-

dovat písmeno a, b, c, d… např. existují miR-

-133a a miR-133b nebo let-7a, let-7b, let-7d,…, 

let-7i apod., které se vzájemně jen velice jemně 

liší ve své struktuře, ale mohou se lišit svými cíli 

a funkcí či tkáňovou expresí. Dále se zjistilo, že 

jedna miRNA může být zakódována v genomu 

na více místech (existuje tedy více genů pro 

danou miRNA kódující zcela stejnou sek-

venci nukleotidů) –  k jejich odlišení je možné 

za první číselný údaj přidat pomlčku a další 

číslo, např. miR-1-1 a miR-1-2 jsou stejné ve 

své struktuře, ale miR-1-1 je kódována genem 

na chromozomu 20, a miR-1-2 je kódována 

genem na chromozomu 18. Pokud je však za 

číslem udávající pořadí jejich objevu uvedeno 

číslo s písmenem (konkrétně 3p nebo 5p), 

jedná se o bližší specifi kaci aktivního vlákna 

(pocházející z 3’ nebo z 5’ konce prekurzorové 

miRNA –  viz dále). Posledním krokem, jak spe-

cifi kovat, o které miRNA hovoříme, je přidání 

třípísmenného prefi xu, který odráží, o jakém ži-

vočišném druhu hovoříme –  např. hsa-miR-1 je 

lidská miR-1; hsa je zkratka pro homo sapiens. 

Podobně se v literatuře setkáme s prefi xy cel 

(Caenorhabditis elegans –  háďátko), rno (rattus 

novergicus –  potkan), mmu (mus musculus –  

myš) a podobně.
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Obr. 2. Základní informace o intracelulárních miRNA.

A) Komplexnost regulace pomocí miRNA. Jedna miRNA často cílí na řadu různých mRNA a naopak může být jedna mRNA regulována celou 

řadou různých miRNA. Na příkladu miR-1, hojně exprimované v srdci, uvádíme některé příklady jejích cílů zapojených do procesů kardiogeneze, 

regulace metabolizmu vápníku a metabolizmus obecně, a pak do procesů remodelace myokardu a karidogeneze. Na příkladu konexinu 43 (Cx43) 

pak dokládáme, že jedna mRNA může být cílem celé řady dalších miRNA.

B) Další funkce miRNA. Výzkumy z posledních let ukazují, že krom negativní post-transkripční regulace (vpravo dole) zasahují miRNA do procesu 

genové exprese na mnoha dalších úrovních – jsou schopny vytvářet triplexy s DNA, čímž ji blokují pro transkripční faktory a brání přepisu; dále 

blokují zrání již vytvořené primární RNA, brání jejímu alternativnímu sestřihu a jsou schopny se vázat i na jiné RNA, než jen na mRNA, např. na ri-

bozomální RNA (rRNA) nebo na dlouhé nekódující RNA (lncRNA). Některé studie dokonce ukazují, že některé miRNA jsou skladovány v jadérku, ze 

kterého mohou být následně přemístěny do jádra a do cytoplazmy, kde plní uvedené funkce.
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buněk. V roce 2008 se však ukázalo, že miRNA 

je možné najít i za hranicí buněčné mem-

brány –  v krvi a jejích derivátech (plazmě, séru), 

ale také v moči či ve slinách [15,16]. miRNA 

nacházející se v extracelulárním prostoru jsou 

stabilní (jsou odolné vůči štěpícím enzymům 

nacházejícím se v plazmě), jejich hladiny lze re-

produbicilně a opakovaně stanovit, a co je pro 

možné klinické využití nejdůležitější, jejich hla-

diny jsou nenáhodné a odrážejí děje odehráva-

jící se uvnitř organizmu [15,17,18] –  v současné 

době jsou proto studovány jako potencionální 

nové bio markery.

V extracelulárním prostoru jsou miRNA ulo-

ženy v malých membránových váčcích (mikro-

vezikulách, exozomech) [19], v apoptotických 

tělíscích [20] či uvnitř lipoproteinových částic 

o vysoké a nízké hustotě (HDL a LDL) [21,22] 

a dále je možné je najít v komplexech s RNA-

-vazebnými proteiny, nejčastěji s proteinem 

Ago-2 [23], ale také např. s nukleofosminem 

(NMP1) [24]. V současné době se předpokládá, 

že se miRNA do extracelulárního prostoru do-

stávají dvěma hlavními mechanizmy –  jsou do 

něj aktivně pumpovány (např. pomocí neut-

rální sfi ngomyelinázy 2 [25] či při vzniku mik-

rovezikul/ exozomů) nebo se do něj dostávají 

pasivně při zániku buněk (obr. 3).

miRNA, které jsou do extracelulárního pro-

storu aktivně pumpovány nebo se do něj do-

stávají v podobě apoptotických tělísek, se 

podílejí na mezibuněčné komunikaci [26] –  

opakovaně bylo prokázáno, že miRNA produ-

kované a uvolňované do extracelulárního pro-

storu jedním typem buněk jsou vychytávány 

v jiných buňkách, v nichž dokážou ovlivnit ge-

novou expresi [27]. Např. fi broblasty přítomné 

v myokardu produkují vlivem tlakového přetí-

žení či působením angiotenzinu II (dvou stre-

sových faktorů rezultujících v hypertrofi i myo-

kardu) exozomy, které obsahují velké množství 

miR-21-3p; tyto exozomy jsou okolními kar-

diomyocyty vychytávány a miR-21 v nich ak-

tivuje signalizační kaskády vedoucí k buněčné 

hypertrofi i a fi bróze [28]. Blokáda miR-21 do-

kázala u pokusných zvířat tuto hypertrofi i ale-

spoň částečně zvrátit, což otevírá nové mož-

nosti terapie srdeční hypertrofie, potažmo 

srdečního selhání (SS) [28]. Další příklady me-

zibuněčné komunikace pomocí miRNA na-

jdeme v procesu aterosklerózy. Během tohoto 

procesu dochází k zániku endotelií, mj. i apo-

ptózou (programovanou buněčnou smrtí) –  

při apoptóze vznikají tzv. apoptotická tělíska 

a ta obsahují velká množství endotelově spe-

cifi cké miR-126; apoptotická tělíska jsou vychy-

távána v okolních endotelových buňkách, zvy-

šuje se v nich hladina miR-126, která následně 

blokuje protein RGS16, čímž je zvýšena pro-

dukce protizánětlivého cytokinu CXCR4 [20], 

který působí protektivně na zbývající endotel. 

Podobně působí i miR-223 přenášená v HDL. 

Z HDL je tato miRNA přenášena do endotelií, 

v nichž tlumí expresi intracelulární zánětlivé 

Obr. 3. Základní informace o extracelulárních miRNA.

A) Do extracelulárního prostoru se miRNA dostávají pasivně při zániku buněk (např. v pro-

cesu nekrózy) nebo jsou do něj aktivně pumpovány, ať již pomocí různých přenašečů, nebo 

v podobě mikrovezikul/exozomů (malých membránových váčků). Aktivně uvolňované miRNA 

slouží pro mezibuněčnou komunikaci, pasivně uvolňované miRNA jsou odrazem poškození 

tkání.

B) V cirkulaci můžeme najít miRNA, které jsou chráněné před rozkladem tělu vlastními RNázami 

(enzymy štěpícími RNA) několika způsoby: jsou napojeny na RNA-vazebné proteiny (Ago II, 

NPM1), nebo jsou uloženy v molekulách lipoproteinů o vysoké/nízké hustotě (HDL,LDL), v apo-

ptotických tělíscích nebo v membránových váčcích (exozomech a mikrovezikulách). Metody 

molekulární biologie dokonce umožňují studium miRNA v jednotlivých modalitách.
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molekuly 1 (ICAM1), a tím rovněž snižuje zá-

nětlivou odpověď, protože dochází k menší in-

fi ltraci endotelu leukocyty [21]. Tyto příklady 

jednoznačně ukazují, že extracelulární přenos 

miRNA je jedním z nových způsobů mezibu-

něčné komunikace, a jelikož je mezibuněčná 

komunikace u řady nemocí narušena, mohou 

změny v hladinách miRNA odrážet přítomnost 

či aktivitu daného onemocnění.

Jak bylo řečeno výše, tak kromě aktivního 

transportu se miRNA do cirkulace dostávají 

i pasivně, např. při nekróze tkání vlivem is-

chemie (např. u akutního infarktu myokardu 

(AIM) [29] nebo u ischemické cévní mozkové 

příhody [30]), či mechanickým (ať již při ope-

racích, úrazech nebo i vlivem vysokého krev-

ního tlaku [31]) nebo chemickým (např. vlivem 

léčiv [32]) postižením. Tyto miRNA se v krvi za 

normálních okolností nevyskytují a jejich pří-

tomnost v cirkulaci proto odráží poškození 

orgánů, ze kterých pocházejí. Většina miRNA 

se sice vyskytuje ve všech tkáních, ale existují 

i miRNA, které se zvýšeně exprimují v ně kte-

rých tkáních –  o těchto miRNA hovoříme jako 

o tkáňově specifi ckých a právě tyto miRNA 

představují potenciální bio markery tkáňo-

vého poškození [33]. Pro kardiologii asi nej-

známějším příkladem jsou svalově specifi cké 

miR-1, miR-133, miR-208 a miR-499, které jsou 

v současné době intenzivně zkoumány jako 

nové potenciální bio markery IM [29].

miRNA v patofyziologii a výhledy 
pro terapii a dia gnostiku ně kte rých 
kardiovaskulárních nemocí
Ateroskleróza a IM
Ateroskleróza je multifaktoriální proces, během 

kterého dochází k ukládání lipidů do stěny 

tepen, což vede k jejich chronickému zánětu, 

remodelaci a ke vzniku aterosklerotických 

plátů –  ruptura či přílišný nárůst těchto plátů 

může rezultovat např. v akutní koronární syn-

drom či v ischemickou cévní mozkovou pří-

hodu; v dlouhodobém hledisku vede atero-

skleróza k ischemickému poškození všech 

myslitelných orgánů na podkladě jejich sní-

ženého prokrvení [34]. V procesu aterosklerózy 

je zapojena celá řada miRNA, které ovlivňují její 

jednotlivé patofyziologické dráhy –  např. me-

tabolizmus lipoproteinů a cholesterolu, zánět-

livou reakci a cévní remodelaci [34].

Metabolizmus lipoproteinů a transport cho-

lesterolu je regulován řadou miRNA, z nichž 

jmenujme např. miR-27b, miR-33, miR-148a 

nebo miR-223 [35]. Všechny tyto miRNA cílí 

na mRNA proteinů, které se přímo podílí na 

transportu cholesterolu z tkání jater (např. 

miR-33 snižuje hladiny proteinu ABCA1, který 

zajišťuje efl ux cholesterolu z tkání do HDL [36]), 

z jater do žluči (v tomto procesu miR-33 cílí na 

ABCB11, což je transportér zajišťující přenos 

cholesterolu přes membránu hepatocytu do 

žlučových cest [37]) nebo jsou nezbytné pro 

vznik lipoproteinů (jedním z cílů miR-27b je 

např. apolipoprotein B nezbytný pro vznik VLDL, 

a tedy i LDL [38]) či pro jejich vychytávání v já-

trech (miR-148a reguluje v játrech vznik re-

ceptoru pro lipoproteiny o nízké hustotě, tedy 

LDL-receptoru [39], miR-223 cílí na scavenge-

rové receptory, konkrétně na SRB1 (scaven-

gerový receptor 1. typu třídy B)) [40]. Ovliv-

něním hladin těchto miRNA u pokusných zvířat 

bylo dosaženo zajímavých výsledků –  blokáda 

miR-33 způsobila, že došlo ke zmenšení atero-

sklerotických plátů a zvýšení hladin cirkulujícího 

HDL až o 50 % [41], podobně pak blokáda miR-

-148a zvýšila clearance LDL částic v játrech [39]. 

V klinické praxi se můžeme setkat s mipomer-

senem –  jedná se o „anti-sense terapii“ využí-

vající jevu RNA-interference: mipomersen se 

velice podobně jako miR-27a cíleně váže v ját-

rech na mRNA pro apolipoprotein B (apoB), což 

vede ke snížení hladin LDL a v dlouhodobém 

hledisku ke snížení kardiovaskulárních (KV) 

příhod u léčených pa cientů [42]. 

Další doménu přispívající ke vzniku ate-

rosklerózy –  tedy zánět a přechod bílých kr-

vinek z cirkulace do cévní stěny –  regulují další 

miRNA. Výše již byl popsán význam v HDL čás-

ticích přenášené miR-223, která brání pře-

stupu bílých krvinek do cévní stěny blokádou 

ICAM-1 [21], podobně funguje i miR-126 [43]. 

Další miRNA zapojenou do regulace zánětu je 

např. miR-181b, která přímo ovlivňuje signální 

kaskádu nukleárního faktoru kappa B (NFκB), 

a tím reguluje zánětlivou odpověď –  její zablo-

kování dokonce vedlo k zmenšení aterosklero-

tických plátů, aniž by se změnil lipidový profi l 

pokusných zvířat [44], což naznačuje, že proti-

zánětlivé strategie léčby aterosklerózy mohou 

být účinné i pokud se nepodaří snížit hladiny 

krevních lipidů.

Kromě patofyziologického a potenciálního 

terapeutického významu pak mají celé skupiny 

dalších miRNA dia gnostický význam. Uzávěr 

koronárních tepen při AIM vede k vyplavení 

výše zmíněných v srdci bohatě se vyskytují-

cích miRNA (miR-1, miR-133, miR-208 nebo 

miR-499), jejichž hladiny dobře korelují s hla-

dinami troponinu, a je tak zřejmé, že odrážejí 

myokardiální poškození [29]. Nutno však po-

dotknout, že senzitivita ani specifi cita těchto 

miRNA ve většině provedených studií nepře-

sáhla senzitivitu a specifi citu troponinu [29] 

a také že praktické využití těchto miRNA v dia-

gnostice AIM bude možné až po standardizaci 

laboratorních postupů a po významném zkrá-

cení celého procesu stanovení hladin miRNA 

(v současné době je nezbytná izolace RNA, 

reverzní transkripce do molekuly komple-

mentární DNA a poté polymerázová řetězová 

reakce v reálném čase (qRT-PCR), které spo-

lečně trvají déle než 3 hodiny) [29].

V čem by se však cirkulující miRNA u AIM 

mohly uplatnit i bez zkrácení procesu sta-

novení, je predikce dalšího vývoje stavu 

u pa cientů po AIM. Z krevních vzorků odebra-

ných v průměru 18 dní po IM s ST elevacemi 

(STEMI) bylo možné identifi kovat zvýšené hla-

diny tří miRNA (miR-34a, miR-192 a miR-194), 

které predikovaly vznik SS do jednoho roku od 

prodělání STEMI [45). Stejná skupina autorů 

popsala i další miRNA, konkrétně miR-155 

a miR-380, které predikovaly náhlou srdeční 

smrt pa cientů po STEMI do jednoho roku od 

propuštění z nemocnice [46]. Jiní autoři po-

psali podobný význam zvýšených cirkulujících 

hladin miR-328 a miR-134 [47] a další autoři 

popisují možnost využití miR-16, miR-27a, 

miR-101 a miR-150 spolu s klinickými cha-

rakteristikami (anteriorní AIM a elevace 

NT-proBNP) v predikci vzniku poruchy kon-

traktility u pa cientů šest měsíců po AIM [48]. 

Výsledky těchto pilotních studií musí být po-

tvrzeny na větších kohortách pa cientů, ale 

pokud se potvrdí, mohly by miRNA předsta-

vovat nezávislé prediktory přežití pa cientů 

po AIM, a umožnit tak jejich lepší stratifi kaci 

a sledování. 

Srdeční selhání
SS představuje komplexní syndrom charak-

terizovaný neschopností srdce pokrýt me-

tabolické nároky jednotlivých tkání. Riziko-

vých faktorů vedoucích ke vzniku SS je celá 

řada, ať se již jedná o ischemickou chorobu 

srdeční, hypertenzi, diabetes mellitus, fi bri-

lace síní (FS), chlopenní vady či dilatační kar-

diomyopatii jako konečný fenotyp celé řady 

dalších onemocnění. Tato vysoká hetero-

genita je pravděpodobně příčinou toho, že 

se stále nedaří nalézt „jednoznačný podpis“, 

tedy profi l několika konkrétních miRNA, který 

by byl pro SS specifi cký [49]. Recentní sou-

hrnný článek popisující význam miRNA u SS 

shrnuje poznatky z 21 studií a vyzdvihuje 

13 miRNA (miR-1, miR-21, miR-30a, miR-92a, 

miR-124-3p, miR-126, miR-150, miR-195, 
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miR-210, miR-342-3p, miR-423-5p, miR-499-5p 

a miR-622), u nichž byla i přes značnou hete-

rogenitu zkoumaných kohort opakovaně (mi-

nimálně ve dvou nezávislých studiích) pozo-

rována změněná exprese, a mohly by tak být 

zapojeny do drah, které jsou pro SS společné 

různým patologiím [49]. Z uvedených se např. 

miR-21 a miR-29 spojují s fi brózou myokardu, 

miR-1 a miR-30a s hypertrofií a miR-195 a miR-

-499-5p s procesem apoptózy [49] –  tedy 

s procesy, o nichž je známo, že probíhají v se-

lhávajícím myokardu. Další miRNA byly v ani-

málních experimentech či s využitím buněč-

ných kultur identifi kovány jako potenciální 

regulátory funkce natriuretických peptidů 

(NP) nebo renin-angiotenzin-aldosterono-

vého systému (RAAS). Např. syntéza atriál-

ního natriuretického peptidu (ANP) je přímo 

regulována miR-425 [50], receptor pro NP 

typu 3 (NPR3) je zase cílem miR-100 [51] a re-

ceptor typu 1 pro angiotenzin II (AT1R) je cílem 

miR-155 [52]. Terapeutické ovlivnění obou uve-

dených systémů představuje první krok léčby 

SS pomocí sakubitril-valsartanu [53] a nové te-

rapeutické postupy cílící na ně kte rou z výše 

uvedených miRNA by mohly v budoucnu při-

spět k individuálnímu nastavení terapie jed-

notlivých pa cientů.

Co se týče dia gnostiky SS pomocí miRNA, 

nebyl zatím popsán jednoznačný profi l, který 

by byl pro dia gnózu SS více specifi cký než 

v současnosti užívané stanovení NT [49]. 

Watson et al však identifkovali pět sérových 

miRNA (miR-30c, miR-146a, miR-221, miR-

328 a miR-375) a Nair et al identifi kovali dal-

ších pět miRNA vyizolovaných z buff y-coatu 

(tedy zejména leukocytárních; konkrétně miR-

-124-5p, miR-142-3p, miR-454, miR-500 a miR-

1246), které dokázaly rozlišit pa cienty se zacho-

valou a redukovanou ejekční frakcí, a mohly 

by tak sloužit jako bio markery diastolické dys-

funkce [54,55]. Zaměříme-li se na prognostické 

markery, tak zatím asi doposud největší studie 

zahrnující na 1 000 pa cientů prokázala, že sní-

žené hladiny miR-423-5p predikují horší pro-

gnózu u pa cientů prezentujících se s akutní 

dušností, u nichž byla následně stanovena 

dia gnóza akutního SS. Horší prognóza byla 

defi nována jako četnější následné hospita-

lizace pro SS nebo vyšší mortalita v prvním 

roce [56].

Specifi ckou oblastí, kde by miRNA mohly 

najít své uplatnění, je terminální SS a transplan-

tace srdce –  pa cienti po transplantaci srdce 

jsou zejména v prvních měsících od výkonu vy-

staveni riziku odmítnutí štěpu (akutní celulární 

rejekce), současné preventivní postupy proto 

zahrnují sérii pravidelných klinických prohlídek, 

jejichž nedílnou součástí je endomyokardiální 

bio psie se zhodnocením stupně rejekce v ode-

braném vzorku [57]; neinvazivní marker re-

jekce v současné době ještě neexistuje. Dvě 

studie zaměřující se na stanovení cirkulují-

cích miRNA již prokázaly, že sérové hladiny vy-

braných miRNA (konkrétně miR-27a, miR-101, 

miR-142-3p, miR-144, miR-326 a miR-424

v první studii [58] a miR-10a, miR-31, miR-92a 

a miR-155 v druhé studii [59]) odlišují pa cienty 

s akutní celulární rejekcí od pa cientů bez re-

jekce. Pravidelné sledování hladin těchto 

miRNA by tak mohlo v budoucnu sloužit k ne-

invazivní monitoraci rejekce bez nutnosti in-

vazivní endomyokardiální bio psie.

Fibrilace síní
FS představuje nejčastější supraventrikulární 

setrvalou arytmii, jejíž incidence se stárnutím 

populace stoupá [60]. V patofyziologii FS se 

uplatňuje celá řada procesů, které lze shrnout 

pod pojmy elektrické a strukturální remode-

lace. Oba tyto procesy vedou ke zkrácení efek-

tivní refrakterní periody, zkrácení trvání akč-

ního potenciálu, a to následně favorizuje vznik 

re-entry [61].

První studie věnující se problematice miRNA 

a FS se zaměřily (jako většina kardiologických 

studií) na miRNA, které jsou abundantně ex-

primovány v srdci, konkrétně na miR-1 [62]. 

U pa cientů podstupujících kardiochirurgický 

výkon byly odebrány vzorky síňového myo-

kardu a prokázalo se, že miR-1 je v síňovém 

myokardu pa cientů se známou FS o 86 % 

méně exprimována ve srovnání s pa cienty bez 

FS. Snížení miR-1 také korelovalo se zvýšením 

hladin draselného kanálu Kir2.1 (KCNJ2; který 

je jejím mechanistickým cílem), a to vedlo 

k zesílení IK1 proudu, o němž je známo, že 

se na patofyziologii FS podílí [63]. Podobně 

se pak miR-1 podílí na regulaci exprese sr-

dečních konexinů nezbytných pro správné 

šíření vzruchu mezi kardiomyocyty (přímým 

cílem je konexin-43) [64]. Na regulaci exprese 

Kir2.1 se dále podílí miR-26 (u pa cientů s FS 

rovněž downregulovaná) [65] a další draslí-

kový kanál KCNN3 je zase regulován miR-499, 

jejíž exprese je u pa cientů s FS zvýšená [66]. 

Kromě draslíkových kanálů bylo prokázáno, že 

miRNA regulují i hladiny kanálů pro vápenaté 

ionty –  např. miR-328, zvýšená v myokardu 

u pa cientů s FS, cílí na CACNA1C a CACNB, 

čímž snižuje jejich expresi, a zkracuje tak trvání 

akčního potenciálu [67]. Po elektrickém remo-

delování přichází remodelování strukturální, 

kdy dochází k přestavbě síně a jehož nedílnou 

součástí je vznik fi brózy. Do procesu fi broti-

zace je rovněž zapojena celá řada miRNA –  

např. miR-30 reguluje hladiny růstového fak-

toru pojivové tkáně (conective tissue growth 

factor –  CTGF) [68], miR-29 přímo reguluje 

hladinu proteinů nezbytných k vytvoření ko-

lagenu [69] a v neposlední řadě již dříve v textu 

zmíněná miR-21 reguluje přežití fi broblastů 

tím, že cílí na protein Sprouty 1 [70]. Hladiny 

miR-30 a miR-29 jsou v srdcích u pa cientů s FS 

sníženy (což mechanisticky vede ke zvýšení 

zmiňovaného CTGF a produkce kolagenu), 

hladiny miR-21 jsou sníženy (čímž je zvýšeno 

přežívání fi broblastů) [68– 70]. 

Kromě studií zaměřených na srdeční tkáň, 

a tedy zejména na bližší pochopení patofy-

ziologie FS, pak existují i studie, které se za-

obíraly možným dia gnostickým využitím 

miRNA –  hladiny zmiňovaných miR-21, 

miR-29 či miR-328 jsou v plazmě jedinců s FS 

sníženy [69,71]; podobně jsou sníženy i hla-

diny dalších miRNA, např. miR-150, miR-409-3p 

nebo miR-432 [71,72]. Při porovnání jedinců 

s paroxysmální a perzistující FS se dokonce 

ukazuje, že hladiny miR-21 a miR-150 jsou 

nižší u jedinců s paroxysmální FS [71] a v ne-

poslední řadě bylo prokázáno, že hladiny 

miR-21, miR-150, miR-409-3p a miR-432 se 

po katetrové ablaci vracejí k normálním hod-

notám [71,72], a lze tedy předpokládat, že 

změny jejich plazmatických hladin skutečně 

odrážejí přítomnost/ nepřítomnost FS.

Hypertenze
Hypertenze představuje nejčastěji se vysky-

tující rizikový faktor KV onemocnění a její 

etiopatogeneze není stále zcela objasněna, 

i když je známa řada rizikových faktorů, které 

vedou ke zvýšení a následné fi xaci elevova-

ného TK. miRNA do patogeneze hypertenze 

zasahují hned na několika úrovních [73,74]. 

Na úrovni endoteliální dysfunkce je známa 

řada miRNA, které se podílejí na regulaci ad-

hezivních molekul pro leukocyty (viz výše), 

čímž ovlivňují intaktnost endotelu a přestup 

bílých krvinek do cévní stěny [21]; jiné miRNA, 

např. klastr miR-143/ 145, reagují na změny 

v proudění krve, což ovlivňuje hladiny endo-

telem produkovaných působků –  konkrétně 

změna laminárního proudění krve na turbu-

lentní a zvýšení tzv. shear stressu vede ke zvý-

šení hladin této miRNA, což mechanisticky 

způsobí snížení hladin angiotenzin-konvertu-

jícího enzymu (ACE) a narušení vazodilatace 
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mediované bradykininem [75]. Přes řadu dal-

ších kroků se tato miRNA navíc podílí na udr-

žení tzv. kontraktilního fenotypu hladkosvalo-

vých buněk cévní stěny –  jsou-li hladiny této 

miRNA dysregulovány, přecházejí hladkosva-

lové buňky cévní stěny do fenotypu prolifera-

tivního (dochází k cévní remodelaci), a nejsou 

tak schopny plnit svou funkci v regulaci TK [75]. 

Další miRNA, miR-155, zasahuje do regulace 

TK rovněž na dvou úrovních –  jedním z jejích 

mechanistických cílů je AT1R [52], druhým je 

jeden z hlavních producentů oxidu dusnatého 

(NO), tedy endoteliální NO-syntáza (eNOS) [76]. 

miR-155 je považována za miRNA spojovanou 

se zánětem [77] a chronický zánět endotelu 

je rovněž považován za jednoho z přispěva-

telů endotelové dysfunkce a hypertenze [73].

Velice zajímavé výsledky pak přináší i hu-

mánní studie, kdy byly v krvi u pa cientů s hy-

pertenzí nalezeny zvýšené hladiny, kromě řady 

lidských miRNA, miRNA pocházející z cyto-

megaloviru (CMV) –  hcmv-miR-UL112 [78]. 

Tento nález otevírá možnost, že by hyper-

tenze mohla být spojena s infekcí CMV, avšak 

nelze z něj posoudit kauzalitu, tj. nelze říci, 

zda je tato miRNA vyplavována z poškozených 

buněk vlivem hypertenze nebo zda je CMV in-

fekce primární inzult vedoucí ke zvýšení TK. 

Mechanisticky je zde možný následující vztah: 

jedním z cílů hcmv-miR-UL112 je interferon 

regulující faktor 1 (IRF-1), o němž je známo, 

že reguluje hladiny AT2R a že je spojený s in-

dukcí syntézy NO v kardiomyocytech [74]. Sní-

žení IRF-1 pomocí hcmv-miR-UL112 by proto 

mohlo vést ke snížení hladin AT2R (jehož ak-

tivace je považována za kardioprotektivní 

a což by mohlo vést k vychýlení rovnováhy 

AT1R × AT2R ve prospěch vazokonstrikčního 

působení AT1R) a rovněž by mohl snižovat hla-

diny NO, a tím vést k poruše vazodilatace [74]. 

V oblasti hypertenze se zatím jedná o pilotní 

studie, ale lze předpokládat, že nám miRNA 

mohou pomoci osvětlit ně kte ré stále nejasné 

patofyziologické aspekty vedoucí k elevaci TK, 

které by potenciálně mohly být využitelné při 

stratifi kaci rizika u pa cientů nebo k vytvoření 

nových terapeutických přístupů.

Chlopenní vady
Chlopenní vady postihují přibližně 2,7 % po-

pulace, přičemž v kohortě pa cientů nad 75 let 

může jít i o více než 13 % jedinců [79]. Nej-

více pozornosti bylo ve studiích zaměřených na 

význam miRNA u chlopenních vad věnováno 

problematice aortální stenózy a méně pak mi-

trálním vadám. U aortální stenózy je známo, 

že postupně se rozvíjející změny na úrovni ko-

lagenních vláken způsobují tuhnutí jednotli-

vých cípů, což vede k bio mechanickým a he-

modynamickým změnám, jejichž následkem 

je další poškození chlopně, její postupná kalci-

fi kace, infi ltrace makrofágy, přestavba extrace-

lulární matrix a akumulace lipidů [80]. Změny 

průtoku se poté projevují i v levé komoře, která 

se pozvolna remodeluje (ve smyslu hypertrofie 

a fi brózy). Jelikož u jedinců s bikuspidní aor-

tální chlopní dochází k častějšímu rozvoji aor-

tální stenózy, byla provedena analýza miRNA 

přímo v bikuspidních a trikuspidních aortálních 

cípech (získaných při kardiochirurgických zákro-

cích) a ukázalo se, že exprese 35 různých miRNA 

je mezi cípy změněná [81]. Další výsledky pak 

přináší porovnání kalcifi kované chlopně a ne-

kalcifi kované okolní tkáně či nekalcifi kovaných 

chlopní, které odhalilo snížení hladin miR-30b, 

miR-374b, miR-602 a miR-939 a zvýšení hladin 

miR-125b [82,83]. Analýzy okolního hypertrofo-

vaného myokardu zase ukázaly snížení hladin 

srdeční miR-1, které se však normalizovaly po 

náhradě aortální chlopně (AVR) [84].

Řada studií se rovněž zaměřila na cirkulu-

jící miRNA a jejich dia gnostický a prognos-

tický význam u aortální stenózy, a to se zajíma-

vými výsledky –  porovnání pa cientů s různými 

typy hypertrofie (s hypertrofi ckou obstrukční 

a neobstrukční kardiomyopatií a s hypertrofií 

na podkladě aortální stenózy) ukázalo, že 

miR-29c je specifi cky zvýšena jen u pa cientů 

s aortální stenózou [85]. Hladiny jiných miRNA 

korelují s různými echokardiografi ckými, la-

boratorními či klinickými parametry –  hla-

diny miR-21 korelují s transvalvulárním gra-

dientem a mírou fibrózy myokardu [86], 

hladiny miR-387 korelují s LV mass indexem 

a dokonce slouží jako nezávislé prediktory hy-

pertrofie [87], hladiny miR-1 zase negativně 

korelují s vyplavováním FABP3 [84] a zvýšené 

hladiny miR-210 jsou asociované s vyšší mor-

talitou (follow-up 3,5 roku) [88].

Co se týče mitrální chlopně, bylo prove-

deno jen několik málo studií, které se zamě-

řily na porovnání myxomatózní degenerace 

mitrální chlopně a fi broelastické defi cience, 

při nichž autoři identifi kovali rozdíly v expresi 

minimálně 10 miRNA, které společně ovlivňují 

expresi jednotlivých strukturálních složek mit-

rální chlopně (např. fi bromodulinu, alfa-aktinu, 

proteinů extracelulární matrix a dalších) [89]. 

Studie zaměřující se na cirkulující miRNA byly 

zatím provedeny pouze na psích modelech, 

které ukazují, že plazmatická exprese vybra-

ných miRNA se liší mezi pokusnými zvířaty 

s již rozvinutou hypertrofií bez SS a s již mani-

festním SS [90].

Další oblasti
Na animálních modelech je nyní studován 

význam miRNA u myokarditid [91]. Jiné studie 

se zaměřují na možné využití miRNA v dia-

gnostice kardiomyopatií –  např. miR-3135b, 

miR-3908 a miR-5571-5p jsou zvýšeny v cirku-

laci u pa cientů s dilatační kardiomyopatií (ve 

srovnání se zdravými kontrolami) [92], zvýšené 

hladiny miR-185 mají u těchto pa cientů pozi-

tivní prognostický význam, protože po roční 

kontrole pa cienti s vyššími vstupními hladi-

nami miR-185 vykazují zlepšení v systolické 

funkci srdce, snížení NT-proBNP a také méně 

hospitalizací pro SS a nižší mortalitu [93]. Velké 

množství výzkumů se věnuje problematice 

plicní hypertenze a jejímu možnému terapeu-

tickému ovlivnění [94]. Podobné příklady by 

pak bylo možné najít ve všech ostatních ob-

lastech kardiologie.

Závěr
miRNA jsou sice malé svou velikostí, ale 

mohou být velké svým významem. Jejich stu-

dium přináší nové pohledy na patofyziologii 

KV nemocí. Experimenty na buněčných kul-

turách či na animálních modelech ukazují na 

jejich možný terapeutický potenciál a jejich 

přítomnost v cirkulaci a fakt, že jejich hla-

diny odrážejí děje odehrávající se uvnitř or-

ganizmu, z nich dělají slibné bio markery uži-

tečné v dia gnostice, diferenciální dia gnostice 

či při odhadu prognózy konkrétního pa cienta. 

Jejich užití v každodenní klinické praxi je stále 

hudbou budoucnosti, neboť je nutné vyřešit 

celou řadu technologických a praktických pro-

blémů, které s sebou každá nová výzkumná 

oblast přináší (např. je nutné nalézt vhodné 

vnitřní kontroly pro normalizaci hladin miRNA, 

které zlepší vzájemné porovnávání výsledků 

mezi různými výzkumnými týmy; dále je nutné 

urychlit celý proces izolace a stanovení, je ne-

zbytné aktuální výsledky pilotních studií ověřit 

na větších kohortách a provést více studií po-

rovnávajících pa cienty se stejnými symp-

tomy, nejen jedince s danou nemocí a zdravé 

kontroly, je nutné zjistit, jak se mění hladiny 

miRNA vlivem léčiv apod.). Budoucí výzkum 

také může ukázat, že vzhledem ke komplex-

nosti KV nemocí nebude možné miRNA v kli-

nické praxi využít jinak než u několika málo 

specifi ckých případů. Pokud se však výsledky 

pilotních pozorování potvrdí, lze předpokládat, 

že si miRNA možná jednoho dne najdou své 

proLékaře.cz | 10.1.2026



266 www.kardiologickarevue.cz

MikroRNA v kardiologii –  přehled pro klinickou praxi 

místo v doporučených postupech, ať již jako 

nové působky bio logické léčby nebo jako dia-

gnostické či prognostické markery. 

Poděkování
Podpořeno projektem „Cirkulující mikroRNA jako 

neinvazivní markery rejekce štěpu u pa cientů 

po srdeční transplantaci“ podpořeného Agentu-

rou pro zdravotnický výzkum ČR (registrační číslo 

16-30537A).
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