Molekulárně genetické změny u Richterovy transformace chronické lymfocytární leukemie


Molecular genetic aberrations in Richter transformation of chronic lymphocytic leukaemia

Richter transformation (Richter syndrome, RT) is defined as the transformation of chronic lymphocytic leukaemia (CLL) into high-grade lymphoma. Development of diffuse large B-cell lymphoma (DLBCL) clonally related to CLL is most common, less frequent is transformation to Hodgkin´s lymphoma. RT occurs in approximately 2–10% of CLL patients during the disease course. It develops in patients treated with immunochemotherapy as well as in those treated with novel agents (ibrutinib, idelalisib, venetoclax). In this review, we discuss recent discoveries in the understanding of molecular genetic changes associated with RT. The most common molecular events in RT are concurrent disruptions of TP53 and CDKN2A genes that occur in approximately one half of RT patients. The occurrence of TP53 and CDKN2A aberrations is often associated with aberrant activation of the MYC gene, which is usually caused by structural changes (gain 8q, t (8; 14)) or indirectly by mutations in the MGA gene. In 30% RT patients, activating NOTCH1 mutations are detected, which are often present already prior to transformation. Approximately 20% RT patients carry heterogeneous molecular genetic aberrations. RT in ibrutinib-treated patients is also associated with TP53 and CDKN2A disruptions, activation of MYC as well as NOTCH1 mutations. Additionally, in 40% patients who develop RT on ibrutinib, mutations in BTK and PLCG2 genes were identified, known to be associated with treatment resistance. To date, the genetic landscape associated with RT on idelalisib and venetoclax was not studied. Despite improved understanding of molecular genetic changes linked to RT, genetic aberrations driving RT development have not been reported as yet. Further studies on large patient cohorts together with the development of more sensitive molecular technologies may help elucidate the underlying genetic risk factors in these difficult-to-treat patients.

Keywords:

signalling pathway inhibitors – chronic lymphocytic leukaemia – Richter syndrome – molecular genetic aberrations – mutations


Autoři: A. Petráčková 1;  T. Papajík 2;  E. Kriegová 1
Působiště autorů: Ústav imunologie LF UP a FNOL Olomouc 1;  Hemato-onkologická klinika LF UP a FNOL Olomouc 2
Vyšlo v časopise: Transfuze Hematol. dnes,1, 2020, No. Online only, p. 1-20.

Souhrn

Richterova transformace (Richterův syndrom, RT) představuje transformaci chronické lymfocytární leukemie (CLL) do lymfoproliferace vyšší malignity. Nejčastěji dochází k transformaci do difúzního velkobuněčného B-lymfomu (DLBCL), vzácněji do Hodgkinova lymfomu. K transformaci může dojít kdykoli v průběhu choroby a její výskyt se v literatuře udává v rozmezí 2–10 %. S RT se setkáváme u pacientů léčených imunochemoterapií, ale také u těch, kteří jsou léčeni inhibitory buněčných drah (ibrutinib, idelalasib, venetoklax). Práce se zaměřuje na nejčastější molekulárně genetické aberace asociované s RT-DLBCL vzniklé klonálně z původní CLL. Mezi tyto změny patří disrupce TP53 genu (delece 17p a/nebo mutace) a současně také CDKN2A genu, které se vyskytují u více než poloviny pacientů s RT. S výskytem TP53 a CDKN2A aberací také často souvisí aberantní aktivace genu MYC, která bývá obvykle způsobena strukturálními změnami (zisk 8q, t(8;14)) nebo nepřímo mutacemi v MGA genu. U dalších  30 % pacientů s RT nacházíme aktivační mutace v genu NOTCH1, které bývají často přítomny v CLL klonu ještě před rozvojem RT. Přibližně 20 % případů RT tvoří heterogenní skupina pacientů s dalšími genetickými aberacemi. Také u RT, která vznikla u pacientů léčených ibrutinibem, se setkáváme s disrupcí genu TP53, ztrátou genu CDKN2A, aktivací genu MYC a aktivačními mutacemi v genu NOTCH1. Navíc u 40 % pacientů s RT vzniklou během léčby ibutinibem jsou přítomny mutace v genech BTK a PLCG2, které jsou spojeny s rezistencí k této léčbě. U pacientů s RT vzniklou během léčby idelalisibem a venetoklaxem zatím genetické změny nebyly studovány. I přes popis řady genetických změn u RT, nebyla doposud nalezena molekulární genetická aberace přímo asociovaná s rozvojem RT. Další studie na větších počtech pacientů spolu s rozvojem citlivějších molekulárně diagnostických metod nám v budoucnosti mohou pomoci objasnit molekulární procesy, které vedou k rozvoji této agresivní formy nemoci.

Klíčová slova:

inhibitory buněčných drah – chronická lymfatická leukemie – Richterova transformace – molekulárně genetické aberace – mutace

ÚVOD

Richterova transformace (RT) představuje transformaci chronické lymfocytární leukemie (CLL) do lymfoproliferace vyšší malignity. Nejčastěji dochází k transformaci do difúzního velkobuněčného B-lymfomu (DLBCL) s velmi nepříznivou prognózou, vzácněji do Hodgkinova lymfomu [1]. K transformaci může dojít kdykoli v průběhu choroby, a to nejen u pacientů léčených imunochemoterapií, ale také u těch, kteří jsou léčeni inhibitory buněčných drah (ibrutinib, idelalasib, venetoklax); u malé části nemocných se RT může vyskytnout i v případě dosud neléčené CLL. Výskyt RT se v literatuře udává v rozmezí 2–10 % u pacientů léčených imunochemoterapií [2, 3]. U pacientů léčených novými inhibitory buněčných drah je medián výskytu RT 6 % u těch, kteří byli relabující/refrakterní k imunochemoterapii, a 1 % u pacientů, kteří obdrželi léčbu inhibitorem buněčných drah v první linii léčby (Tabulka 1) [2].

U nejčastější transformace CLL do DLBCL rozlišujeme dvě biologicky odlišné skupiny RT: i) vzniklou klonálně z původní CLL a ii) nepříbuznou s původním CLL klonem. Častěji se setkáváme s RT vzniklou klonálně z původní CLL, která se vyskytuje s frekvencí přibližně 80 % [4–6]. Tato forma RT je charakteristická agresivním průběhem, rezistencí vůči chemoterapii a špatnou prognózou, s mediánem celkového přežití (OS) 6 měsíců, a to i v éře nových inhibitorů buněčných drah [7]. U RT vzniklé klonálně z původní CLL se velmi často setkáváme s výskytem aberací genu TP53, a to až u 60 % pacientů [7, 8]. S RT, která nevznikla klonálně z původní CLL, se setkáváme přibližně u 20 % případů [4–6]. RT-DLBCL nepříbuzná s původním CLL klonem nese molekulární znaky typické pro de novo DLBCL, je citlivá na chemoterapii a u těchto pacientů se dosahuje léčebných odpovědí obdobných jako v případě de novo DLBCL [8]. U této skupiny RT je výskyt TP53 aberací relativně nízký, přibližně 10–20 % [5, 6, 9].

Přestože molekulární procesy rozvoje RT nejsou zcela objasněny, je zřejmé, že klíčovou roli hraje genetika [8, 9] společně s řadou dalších faktorů jako je biologická charakteristika CLL klonu, mikroprostředí, klinické faktory, terapie a další (Obrázek 1) [2, 10]. V této práci shrnujeme molekulárně genetické změny popsané u RT, a to nejen u případů pacientů léčených imunochemoterapií, ale také inhibitory buněčných drah (ibrutinib, idelalisib, venetoklax).

Rizikové faktory rozvoje Richterovy transformace (RT) chronické lymfocytární leukemie (CLL). Upraveno z [10].
Obr. 1. Rizikové faktory rozvoje Richterovy transformace (RT) chronické lymfocytární leukemie (CLL). Upraveno z [10].

Molekulárně genetické Aberace u Richterovy Transformace

Největší rozvoj znalostí o molekulárně genetických aberacích u RT přineslo sekvenování nové generace (NGS), které odhalilo přítomnost řady mutací a malých strukturních změn [11] a doplnilo spektrum aberací detekovaných pomocí cytogenetických metod. Většina informací o genetických aberacích u RT byla popsána u nejčastější formy DLBCL vzniklé klonálně z původní CLL, které se v další části práce věnujeme.

Mezi nejvýznamnější nalezené genetické změny asociované s RT patří aberace genu TP53 (del(17p) a/nebo mutace), mutace v genu NOTCH1, ztráta CDKN2A/B genu a aktivace genu MYC [11]. Přítomnost alespoň jedné této abnormality/mutace se vyskytuje u 90 % pacientů s RT [8, 11]. Podle výskytu těchto klíčových genetických změn můžeme pacienty s RT rozdělit do tří skupin: i) pacienti s TP53 a CDKN2A/B aberacemi (~50 % případů), často s aberantní aktivací genu MYC, ii) pacienti s mutacemi v genu NOTCH1 (~30 % případů), a iii) heterogenní skupina pacientů s dalšími genetickými aberacemi (~20 % případů), mezi které patří zejména ztráty v oblastech 7q31, 8p a 14q a amplifikace v oblastech 8q21, 18q a 13q (Obrázek 2) [12, 13].

Genetické změny u Richterovy transformace chronické lymfocytární leukemie (CLL) do difúzního velkobuněčného lymfomu (RT DLBCL). Upraveno podle [10, 48, 49].
Obr. 2. Genetické změny u Richterovy transformace chronické lymfocytární leukemie (CLL) do difúzního velkobuněčného lymfomu (RT DLBCL). Upraveno podle [10, 48, 49].

K dalším genetickým abnormalitám asociovaných s RT patří komplexní karyotyp, delece 11q, trizomie chromozomu 12, nemutovaný stav IGHV, stereotypní BCR subset 8, deregulovaná exprese mikroRNA (miR-125a, miR-34a, miR-21, miR-146b, miR-181b a miR-150) [14, 15] a krátká délka telomer [16] (Obrázek 2) [2, 6, 11, 16–19]. Byly popsány také jednonukleotidové polymorfismy (SNP) v genech CD38, LRP4 a BCL2 predisponující k RT [10, 20].

TP53, MYC a CDKN2A aberace

Mezi nejčastější genetické změny asociované s RT patří disrupce TP53 genu (delecí 17p a/nebo mutací) a současně CDKN2A genu, které se vyskytují u více než poloviny pacientů s RT vzniklou klonálně z původní CLL (Obrázek 3) [12]. S výskytem TP53 a CDKN2A aberací také často koreluje aberantní aktivace genu MYC [9, 11]. Jedná se o skupinu RT pacientů s nejhorší prognózou [7].

Výskyt mutací v genech TP53 a NOTCH1 v různých fázích chronické lymfocytární leukemie (CLL) [34, 48, 49]. Zkratky: MBL - monoklonální B-lymfocytóza; R/R – relabující/refrakterní, dg – při diagnóze, RT – Richterova transformace
Obr. 3. Výskyt mutací v genech TP53 a NOTCH1 v různých fázích chronické lymfocytární leukemie (CLL) [34, 48, 49]. Zkratky: MBL - monoklonální B-lymfocytóza; R/R – relabující/refrakterní, dg – při diagnóze, RT – Richterova transformace

Všechny postižené geny se významně podílí na patogenezi CLL. Tumor-supresorový gen TP53 kóduje protein p53, který má centrální postavení v ochraně genomové integrity buňky. p53 je aktivován poškozením DNA a buněčným stresem (např. hypoxií, nadměrnou aktivitou onkogenů) a funguje jako transkripční faktor mnoha genů, kterými směřuje osud buňky k zastavení buněčného cyklu s následnou reparací DNA a/nebo do apoptózy [21]. Ukazuje se, že přibližně 50 % pacientů s RT má prokázanou TP53 aberaci v CLL klonu již před transformací [4,17].

Druhým z poškozených genů je CDKN2A. Ten kóduje protein p16INK4A, který inhibuje aktivitu kináz Cdk4 a 6, a tím negativně reguluje postup buněčného cyklu z G1 do S fáze [22]. Dále kóduje také p14ARF, který je inhibitorem MDM2 [23]. Ztráta CDKN2A je obvykle způsobena delecí 9p21 [9]. Gen CDKN2B kóduje další negativní regulátor buněčného cyklu p15INK4B a jeho ztráta je také relativně častá u RT [8]. Zajímavé je, že u RT nebyly popsány inaktivující somatické mutace a ztráta funkce tohoto genu je zřejmě realizována pouze delecí části chromozomů. Na rozdíl od TP53 aberací se delece CDKN2A objevují až v čase transformace [6].

S výskytem TP53 a CDKN2A aberací často koreluje aberantní aktivace genu MYC [9, 11]. MYC funguje jako transkripční faktor ohromného množství genů (10–15 % všech genů) [24], a tím pozitivně ovlivňuje buněčný růst a proliferaci, reguluje metabolismus, adhezi a mitochondriální funkce [25]. Aberantní aktivace MYC je obvykle způsobená strukturními změnami, např. translokací (t(8;14)), kdy se MYC dostává pod velmi aktivní promotor nebo zmnožením úseku DNA s MYC lokusem (amplifikace 8q24) [4, 6, 9]. Další možností je nepřímá aktivace MYC skrze delece nebo mutace v MGA genu, který kóduje antagonistu MYC [26, 27].

NOTCH1 mutace

Aktivační mutace v genu NOTCH1 se nachází přibližně u 30 % pacientů s RT-DLBCL vzniklé klonálně z původní CLL, přičemž tito pacienti současně nemají TP53 a CDKN2A aberace [12]. Aktivační NOTCH1 mutace se u RT pacientů často vyskytují současně s trizomií chromozomu 12, nemutovaným IGHV, ZAP-70 pozitivitou a někdy také se stereotypním BCR subsetem 8 [6, 19, 28, 29]. Mutace v NOTCH1 jsou zpravidla přítomny v CLL klonu ještě před RT (Obrázek 3) [9, 12, 30].

NOTCH1 kóduje transmembránový receptor, který po vazbě ligandu prochází konformačními změnami a proteolytickým štěpením, jehož výsledkem je translokace odštěpeného krátkého aktivního fragmentu ICN1 do buněčného jádra. ICN1 působí jako transkripční faktor řady genů, které podporují buněčnou proliferaci (CCND1, MYC a další) a inhibují apoptózu (např. BCL2) [31–33]. Nejčastější NOTCH1 mutací, kterou nacházíme u 80 % CLL pacientů i pacientů s RT, je delece dvou bází (c.7541_7542delCT) v C-terminální PEST doméně [34]. Tato delece vede k vytvoření předčasného stop kodonu a vzniká zkrácený protein, jenž postrádá regulační domény pro proteozomální degradaci. Důsledkem je hromadění aktivního aberantního ICN1 [35].

MOLEKULÁRNÍ GENETIKA RICHTEROVY TRANSFORMACE V ÉŘE INHIBITORŮ BUNĚČNÝCH DRAH

Také u pacientů léčených inhibitory buněčných drah (ibrutinib, idelalisib a venetoklax) se setkáváme s RT, nejčastěji typu DLBCL vzniklou klonálně z původní CLL [2]. Incidence RT u CLL pacientů léčených inhibitory buněčných drah je u relabujících/refrakterních (R/R) pacientů 6 % (medián) a v první linii léčby 1 % (Tabulka 1). Tato skutečnost naznačuje, že k vývoji RT přispívá více biologická charakteristika CLL než samotný typ léčby [12]. K rozvoji RT u pacientů léčených inhibitory buněčných drah dochází zpravidla během prvních 18 měsíců léčby [11, 35]. Medián OS je u pacientů s RT přibližně 6 měsíců [11, 35].

Je třeba si však uvědomit, že většina pacientů léčených ibrutinibem, idelalisibem i venetoklaxem jsou rizikoví pacienti s TP53 abnormalitami [36-41] a komplexním karyotypem [42], často intenzivně předléčeni [2, 12, 43]. Současné práce prokázaly, že typické molekulárně genetické změny asociované s RT na imunochemoterapii se neliší od změn u RT získané na inhibitorech buněčných drah [11, 40]. Jedná se především o abnormality genů TP53, CDKN2A, MYC a NOTCH1, které byly popsány u pacientů léčených ibrutinibem [40]. Kromě těchto RT-typických aberací byl u 40 % pacientů s RT léčených ibrutinibem prokázán výskyt mutací v genech BTK a PLCG2  [13, 36, 40, 44], které bývají zjištěny až u 80 % případů CLL pacientů s rezistencí k této léčbě (Obrázek 4) [13, 36, 40, 44, 45]. Na rozdíl od ibrutinibu nebyly zatím studovány molekulárně genetické změny u CLL pacientů, u kterých došlo k RT na léčbě idelalisibem a venetoklaxem.

Porovnání výskytu rezistentních mutací v genech BTK a PLCG2 u pacientů s chronickou lymfocytární leukemií (CLL), u kterých došlo během léčby ibrutinibem k progresi onemocnění nebo k Richterově transformaci – souhrn výsledků čtyř studií [13, 36, 40, 44].
Obr. 4. Porovnání výskytu rezistentních mutací v genech BTK a PLCG2 u pacientů s chronickou lymfocytární leukemií (CLL), u kterých došlo během léčby ibrutinibem k progresi onemocnění nebo k Richterově transformaci – souhrn výsledků čtyř studií [13, 36, 40, 44].

Přehled jednotlivých studií zaměřených na výskyt RT u pacientů léčených ibrutinibem, idelalisibem a venetoklaxem je uveden v Tabulce 1. Zatím největší skupina pacientů léčených novými inhibitory, u kterých došlo k RT, zahrnovala 59 (83%) pacientů na BTK inhibitoru, 6 (8%) na PI3K inhibitoru a 6 (8%) na venetoklaxu [43]. Bohužel studie neuvádí genetické změny asociované s RT, ani nesrovnává výskyt RT u jednotlivých léčebných modalit.

Tabulka 1.  Přehled studií uvádějících výskyt Richterovy transformace (RT) u pacientů s chronickou lymfocytární leukemií (CLL) a s lymfomem z malých lymfocytů (SLL) léčených inhibitory buněčných drah.

Autor studie

Rok publikování

Studie

Kohorta pacientů

Počet pacientů

Léčba

Del(17p) a/nebo TP53mut

Medián sledování (měsíce)

Výskyt RT

Ibrutinib/akalabrutinib

O’Brien [50]

2014

NCT01105247

TN

31

Ibrutinib

7 %

22,1

1/31 (3 %)

Farooqui [51]

2015

NCT01500733

TN

35

Ibrutinib

100 %

24,0

2/35 (6 %)

Woyach [52]

2018

NCT01886872

TN

182

Ibrutinib

Del(17p) 5 %

TP53mut 9 %

38,0

0/181 (0 %)

Woyach [52]

2018

NCT01886872

TN

182

Ibrutinib + rituximab

Del(17p) 6 %

TP53mut 12 %

38,0

2/180 (1 %)

Mato [53]

2018

Studie US (Connect Chronic Lymphocytic Leukemia Registry)

TN

80

Ibrutinib

Del(17p) 37 %

TP53mut 12 %

17,0

1/80 (1 %)

O’Brien [54]

2019

NCT01578707 (RESONATE)

NCT01722487

(RESONATE-2)

TN (všichni pacienti bez del(17p))

136

Ibrutinib

0 %

36,0

1/136 (1 %)

Dimou [55]

2019

Jednocentrická studie Řecko

TN

11

Ibrutinib

27 %

24,0

0/11 (0 %)

Moreno [56]

2019

NCT02264574 (iLLUMINATE)

TN

113

Ibrutinib + obinutuzumab

16 %

31,3

0/113 (0 %)

Burger [57]

2019

NCT02007044

R/R, TN (všichni pacienti s abnormalitami TP53)

208

Ibrutinib, ibrutinib + rituximab

88 %

36,0

5/208 (2 %)

Burger [58]

2015

NCT01520519

R/R, TN

40

Ibrutinib + rituximab

50 %

16,8

1/40 (3 %)

Byrd [59]

2013

NCT01105247

R/R

85

Ibrutinib

33 %

20,9

7/85 (8 %)

Farooqui [51]

2015

NCT01500733

R/R

16

Ibrutinib

100 %

24,0

1/16 (6 %)

UK CLL Forum [60]

2016

Studie UK/Irsko

R/R

315

Ibrutinib

34 %

16,0

18/315 (6 %)

O’Brien [61]

2016

NCT01744691 (RESONATE-17)

R/R

144

Ibrutinib

100 %

27,6

17/144 (12 %)

Byrd [62]

2017

NCT02029443

R/R

134

Akalabrutinib

23 %

19,8

3/134 (2%)

Mato [53]

2018

Studie US (Connect Chronic Lymphocytic Leukemia Registry)

R/R

 

536

Ibrutinib

Del(17p) 26 %

TP53mut 13 %

17,0

11/536 (2 %)

Huang [63]

2018

NCT01973387

R/R

106

Ibrutinib

22 %

17,8

1/106 (1 %)

Nuttall [64]

2019

Jednocentrická UK studie

R/R

38

Ibrutinib

31 %

23,0

4/38 (11 %)

Byrd [65]

2019

NCT01578707 (RESONATE)

R/R

195

Ibrutinib

Del(17p) 32 %

TP53mut 51 %

44,0

14/195 (7 %)

Winqvist [66]

2019

Studie Švédsko (CUP program)

R/R

95

Ibrutinib

63 %

30,0

12/95 (13%)

Awan [67]

2019

NCT02029443

R/R (všichni pacienti intolerantní k ibrutinibu)

33

Akalabrutinib

Del(17p) 38 %

TP53mut 30 %

19,0

2/33 (6 %)

O’Brien [54]

2019

NCT01578707 (RESONATE)

NCT01722487

(RESONATE-2)

R/R

(všichni pacienti bez del(17p))

135

Ibrutinib

0 %

44,0

6/135 (4 %)

Fraser [68]

2019

NCT01611090 (HELIOS)

R/R

289

Ibrutinib + bendamustin + rituximab

0 %

34,8

0/289 (0 %)

Dimou [55]

2019

Jednocentrická studie Řecko

R/R

47

Ibrutinib

22 %

24,0

6/47 (13 %)

 

 

 

 

 

 

 

 

 

Idelalisib/duvelisib

O’Brien [69]

2015

NCT01203930

TN

64

Idelalisib + rituximab

14 %

22,4

0/64 (0 %)

Furman [70]

2014

NCT01539512

R/R

110

Idelalisib + rituximab

38 %

3,8

0/110 (0 %)

Zelenetz [71]

2017

NCT01569295 (III)

R/R

207

Idelalisib + bendamustin + rituximab

33 %

14,0

4/207 (2 %)

Flinn [72]

2018

NCT02004522

R/R

160

Duvelisib

19 %

22,4

0/160 (0 %)

 

 

 

 

 

 

 

 

 

Venetoklax

 

 

 

 

 

 

 

 

Cramer [73]

2018

CLL2-BAG

NCT02401503

TN

34

Bendamustin + obinutuzumab + venetoklax

Del(17p) 9 %

TP53mut 17 %

16,0

0/34 (0 %)

Flinn [74]

2019

NCT01685892

TN

32

Venetoklax + obinutuzumab

17 %

26,7

2/32 (6 %)

Stilgenbauer [75]

2019

NCT01889186

R/R, TN (všichni pacienti s abnormalitami TP53)

158

Venetoklax

100 %

26,6

21/158 (13 %)

Roberts [76]

2016

NCT01328626

R/R

116

Venetoklax

30 %

17,0

18/116 (16 %)

Seymour [77]

2017

NCT01682616

R/R

49

Venetoklax + rituximab

Del(17p) 19 %

TP53mut 31 %

28,0

5/49 (10 %)

Seymour [78]

2018

NCT02005471

(MURANO)

R/R

194

Venetoklax + rituximab

Del(17p) 27 %

TP53mut 25 %

23,8

6/194 (3 %)

Jones [79]

2018

NCT02141282

R/R (všichni pacienti po léčbě ibrutinibem)

91

Venetoklax

Del(17p) 47 %

TP53mut 33 %

14,0

5/91 (6 %)

Coutre [80]

2018

NCT02141282

R/R (všichni pacienti po léčbě idelalisibem)

36

Venetoklax

31 %

14,0

2/36 (6 %)

Cramer [73]

2018

CLL2-BAG

NCT02401503

R/R

29

Bendamustin + obinutuzumab + venetoklax

Del(17p) 28 %

TP53mut 40 %

16,0

2/29 (7 %)

 

Rogers [81]

2018

NCT02427451

R/R

12

Obinutuzumab + ibrutinib + venetoklax

13 %

24,4

0/12 (0 %)

Eyre [82]

2019

Multicentrická retrospektivní studie UK

R/R (všichni pacienti po BTKi a PI3Ki léčbě)

105

Venetoklax

48 %

15,6

9/105 (9%)

Flinn [74]

2019

NCT01685892

R/R

43

Venetoklax + obinutuzumab

55 %

29,3

1/43 (2 %)

Vysvětlivky: R/R – relabující/refrakterní, TN – bez předchozí léčby

MOLEKULÁRNÍ GENETIKA TRANSFORMOVANÉHO KLONU

Velmi zajímavou studii provedli Kadri a kol. [40], kteří u šesti pacientů s RT léčených ibrutinibem porovnali genetické změny detekované v CLL klonu přítomném v periferní krvi s párovým vzorkem tkáně s transformovaným klonem. Autoři prokázali abnormality RT-asociovaných genů TP53, CDKN2A, MYC, nebo NOTCH1 u všech pacientů a většina těchto změn (60–95 %) byla přítomna jak v CLL klonu v krvi tak v tkáni s RT [40]. U čtyř pacientů byly v CLL klonu současně detekovány rezistentní mutace v genu BTK, z toho u dvou pacientů se tytéž mutace potvrdily také v nádorové tkáni s RT, u jednoho pacienta byla nalezena jiná BTK mutace v tkáni s RT než v CLL klonu a u jednoho pacienta byla rezistentní mutace prokázána pouze v CLL klonu [40]. Rozdílný výskyt rezistentních mutací v tkáních s RT, periferní krvi a/nebo kostní dřeni ukazuje na nutnost správného odběru vhodných materiálů pro genetickou analýzu.

MOLEKULÁRNĚ GENETICKÉ FAKTORY JAKO PREDIKTIVNÍ FAKTORY

I přes intenzivní výzkum posledních let nebyly dosud nalezeny jednoznačné molekulární genetické markery přímo asociované s rozvojem RT. První studie přesto naznačují, že některé genetické změny by mohly sloužit jako prediktivní markery vzniku RT. CLL pacienti s nemutovaným stereotypním BCR subsetem 8 mají 70% pravděpodobnost rozvoje RT v horizontu 5 let [19], pacienti s mutacemi v NOTCH1 45% pravděpodobnost v horizontu 15 let [7, 46, 47]. Vysoká exprese miR-125a a nízká exprese miR-34a predikovala rozvoj RT u ~50 % RT pacientů [14]. Také délka telomer kratší než 5000 párů bazí byla popsána jako nezávislý prognostický faktor rozvoje RT [16]. Zatím žádný z uvedených markerů však není využíván v rutinní diagnostice.

ZÁVĚR

Richterova transformace je nejčastěji asociována s disrupcí TP53 genu (delecí 17p a/nebo mutací) a CDKN2A genu, které se společně vyskytují u více než poloviny pacientů s RT vzniklé klonálně z původní CLL. U dalších 30 % pacientů s RT nacházíme aktivační mutace v genu NOTCH1, které bývají často přítomny v CLL klonu ještě před rozvojem RT. U 40 % pacientů s RT léčených ibrutinibem se setkáváme také s rezistentními mutacemi v genech BTK a PLCG2. Role genetiky u RT ještě není kompletně objasněná, nicméně první studie naznačují, že některé genetické změny by mohly sloužit jako prediktivní ukazatele vzniku RT. Bude zajímavé sledovat pokračující výzkum molekulární patogeneze RT v kontextu klinického významu.

PODÍL AUTORŮ NA PŘÍPRAVĚ RUKOPISU

AP, EK – příprava rukopisu

AP, TP, EK – revize, korekce rukopisu

PODĚKOVÁNÍ

Grantová podpora: MZ ČR VES16-32339A, IGA UP_2020_016, MH CZ-DRO (FNOL, 00098892)

ČESTNÉ PROHLÁŠENÍ

Autoři práce prohlašují, že vznik ani publikace článku nebyly podpořeny žádnou farmaceutickou firmou. Autoři deklarují tento možný střet zájmů:

Papajík T. – Gilead, Janssen, Abbvie – cestovní a výzkumné granty, konzultace, prezentace

AUTOR PRO KORESPONDENCI S ADRESOU A TITULY

Doc. Dr. Eva Kriegová

Ústav imunologie

LF UP a FN Olomouc

Hněvotínská 3

775 15 Olomouc

e-mail: eva.kriegova@email.cz

Doručeno do redakce dne 19. 12. 2019.

Přijato po recenzi dne 7. 1. 2020.


Zdroje
  1. [1] Bockorny B, Codreanu I, Dasanu CA. Hodgkin lymphoma as Richter transformation in chronic lymphocytic leukaemia: a retrospective analysis of world literature. Br J Haematol 2012;156:50–66.
  2. [2] Ding W. Richter transformation in the era of novel agents. Hematology Am Soc Hematol Educ Program 2018;2018(1):256–263.
  3. [3] Doubek M, Špaček M, Pospíšilová Š, et al. Doporučení pro diagnostiku a léčbu chronické lymfocytární leukemie (CLL) – 2018. Transfuze Hematol. dnes 2018;24:203–216.
  4. [4] Rossi D, Spina V, Deambrogi C, et al. The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood 2011;117:3391–3401.
  5. [5] Rossi D, Gaidano G. Richter syndrome: pathogenesis and management. Semin Oncol 2016;43:311–319.
  6. [6] Chigrinova E, Rinaldi A, Kwee I, et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood 2013;122:2673–2682.
  7. [7] Eyre TA, Schuh A. An update for Richter syndrome - new directions and developments. Br J Haematol 2017;178:508–520.
  8. [8] Rossi D, Spina V, Gaidano G. Biology and treatment of Richter syndrome. Blood 2018;131:2761–2772.
  9. [9] Fabbri G, Khiabanian H, Holmes AB, et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J Exp Med 2013;210:2273–2288.
  10. [10] Parikh SA, Shanafelt TD. Risk factors for Richter syndrome in chronic lymphocytic leukemia. Curr Hematol Malig Rep 2014;9:294–299.
  11. [11] Allan JN, Furman RR. Current trends in the management of Richter's syndrome. Int J Hematol Oncol 2019;7(4). DOI 10.2217/ijh-2018-0010. Elektronicky publikováno 8. ledna 2019.
  12. [12] Khan M, Siddiqi R, Thompson PA. Approach to Richter transformation of chronic lymphocytic leukemia in the era of novel therapies. Ann Hematol 2018;97:1–15.
  13. [13] Ahn IE, Underbayev C, Albitar A, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 2017;129:1469–1479.
  14. [14] Balatti V, Tomasello L, Rassenti LZ, et al. MiR-125a and MiR-34a expression predicts Richter syndrome in chronic lymphocytic leukemia patients. Blood 2018;132:2179–2182.
  15. [15] Van Roosbroeck K, Bayraktar R, Calin S, et al. The involvement of microRNA in the pathogenesis of Richter syndrome. Haematologica 2019;104:1004–1015.
  16. [16] Rossi D, Lobetti Bodoni C, Genuardi E, et al. Telomere length is an independent predictor of survival, treatment requirement and Richter’s syndrome transformation in chronic lymphocytic leukemia. Leukemia 2009;23:1062–1072.
  17. [17] Wang Y, Tschautscher MA, Rabe KG, et al. Clinical characteristics and outcomes of Richter transformation: Experience of 204 patients from a single center. Haematologica; publikováno elektronicky 13. června 2019. DOI 10.3324/haematol.2019.224121.
  18. [18] Strati P, Abruzzo LV, Wierda WG, et al. Second cancers and Richter transformation are the leading causes of death in patients with trisomy 12 chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk 2015;15:420–427.
  19. [19] Rossi D, Spina V, Cerri M et al. Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytic leukemia transformation to Richter syndrome. Clin Cancer Res 2009;15:4415–4422.
  20. [20] Rasi S, Spina V, Bruscaggin A, et al. Avariant of the LRP4 gene affects the risk of chronic lymphocytic leukaemia transformation to Richter syndrome. Br J Haematol 2011;152:284–294.
  21. [21] Catherwood MA, Gonzalez D, Donaldson D, et al. Relevance of TP53 for CLL diagnostics. J Clin Pathol 2019;72:343–346.
  22. [22] Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993;366:704–707.
  23. [23] Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998;92:713–723.
  24. [24] Knoepfler PS. Myc goes global: New tricks for an old oncogene. Cancer Res 2007;67:5061–5063.
  25. [25] Dang CV, O’Donnell KA, Zeller KI, et al. The c-Myc target gene network. Semin Cancer Biol 2006;16:253–264.
  26. [26] Edelmann J, Holzmann K, Miller F, et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 2012;120:4783–4794.
  27. [27] De Paoli L, Cerri M, Monti S, et al. MGA, a suppressor of MYC, is recurrently inactivated in high risk chronic lymphocytic leukemia. Leuk Lymphoma 2013;54:1987–1990.
  28. [28] Balatti V, Bottoni A, Palamarchuk A, et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood 2012;119:329–331.
  29. [29] Del Giudice I, Rossi D, Chiaretti S, et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012;97:437–441.
  30. [30] Rossi D, Rasi S, Spina V et al. Different impact of NOTCH1 and SF3B1 mutations on the risk of chronic lymphocytic leukemia transformation to Richter syndrome. Br J Haematol 2012;158:426–429.
  31. [31] Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009;137:216–233.
  32. [32] Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 2012;13:654–666.
  33. [33] Fabbri G, Holmes AB, Viganotti M, et al. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2017;114(14):E2911–E2919.
  34. [34] Rosati E, Baldoni S, De Falco F, et al. NOTCH1 Aberrations in chronic lymphocytic leukemia. Front Oncol 2018;8:229.
  35. [35] Di Ianni M, Baldoni S, Rosati E, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br J Haematol 2009;146:689–691.
  36. [35] Woyach JA, Ruppert AS, Guinn D, et al. BTK(C481S)-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol 2017;35:1437–1443.
  37. [36] Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol 2015;1(1):80–87.
  38. [37] Ahn IE, Farooqui MZH, Tian X, et al. Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study. Blood 2018;131:2357–2366.
  39. [38] Jain P, Keating M, Wierda W, et al. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib. Blood 2015;125:2062–2067.
  40. [39] Jain P, Thompson PA, Keating M, et al. Long-term outcomes for patients with chronic lymphocytic leukemia who discontinue ibrutinib. Cancer 2017;123:2268–2273.
  41. [40] Kadri S, Lee J, Fitzpatrick C, et al. Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL. Blood Adv 2017;1:715–727.
  42. [41] Ding W, LaPlant BR, Call TG, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 2017;129:3419–3427.
  43. [42] Miller CR, Ruppert AS, Heerema NA, et al. Near-tetraploidy is associated with Richter transformation in chronic lymphocytic leukemia patients receiving ibrutinib. Blood Adv 2017;1:1584–1588.
  44. [43] Davids MS, Roberts AW, Seymour JF, et al. Phase I first-in-human study of venetoklax in patients with relapsed or refractory non-Hodgkin lymphoma. J Clin Oncol 2017;35:826–833.
  45. [44] Burger JA, Landau DA, Taylor-Weiner A, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun 2016;7:11589.
  46. [45] Lampson BL, Brown JR. Are BTK and PLCG2 mutations necessary and sufficient for ibrutinib resistance in chronic lymphocytic leukemia? Expert Rev Hematol 2018;11:185–194.
  47. [46] Rossi D, Rasi S, Fabbri G, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012;119:521–529.
  48. [47] Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011;208:1389–1401.
  49. [48] Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer 2016;16:145–162.
  50. [49] Gaidano G, Foà R, Dalla-Favera R. Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Invest 2012;122:3432–3438.
  51. [50] O'Brien S, Furman RR, Coutre SE, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol 2014;15:48–58.
  52. [51] Farooqui MZ, Valdez J, Martyr S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol 2015;16:169–176.
  53. [52] Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med 2018;379:2517–2528.
  54. [53] Mato AR, Nabhan C, Thompson MC, et al. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: a real-world analysis. Haematologica 2018;103:874–879.
  55. [54] O'Brien SM, Byrd JC, Hillmen P, et al. Outcomes with ibrutinib by line of therapy and post-ibrutinib discontinuation in patients with chronic lymphocytic leukemia: Phase 3 analysis. Am J Hematol 2019;94:554–562.
  56. [55] Dimou M, Iliakis T, Pardalis V, et al. Safety and efficacy analysis of long-term follow up real-world data with ibrutinib monotherapy in 58 patients with CLL treated in a single-center in Greece. Leuk Lymphoma 2019;60:2939–2945.
  57. [56] Moreno C, Greil R, Demirkan F, et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2019;20:43–56.
  58. [57] Burger JA, Sivina M, Jain N, et al. Randomized trial of ibrutinib vs ibrutinib plus rituximab in patients with chronic lymphocytic leukemia. Blood 2019;133:1011–1019.
  59. [58] Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 2015;373:2425–2437.
  60. [59] Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013;369:32–42.
  61. [60] UK CLL Forum. Ibrutinib for relapsed/refractory chronic lymphocytic leukemia: a UK and Ireland analysis of outcomes in 315 patients. Haematologica 2016;101:1563–1572.
  62. [61] O'Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol 2016;17:1409–1418.
  63. [62] Byrd JC, Wierda WG, Schuh A, et al. Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocytic leukemia: updated results from the phase 1/2 ACE-CL-001 Study. Blood 2017;130:498.
  64. [63] Huang X, Qiu L, Jin J, et al. Ibrutinib versus rituximab in relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma: a randomized, open-label phase 3 study. Cancer Med 2018;7:1043–1055.
  65. [64] Nuttall E, Tung J, Trounce E, et al. Real-world experience of ibrutinib therapy in relapsed chronic lymphocytic leukemia: results of a single-center retrospective analysis. J Blood Med 2019;10:199–208.
  66. [65] Byrd JC, Hillmen P, O'Brien S, et al. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood 2019;133:2031–2042.
  67. [66] Winqvist M, Andersson PO, Asklid A, et al. Long-term real-world results of ibrutinib therapy in patients with relapsed or refractory chronic lymphocytic leukemia: 30-month follow up of the Swedish compassionate use cohort. Haematologica 2019;104:e208–e210.
  68. [67] Awan FT, Schuh A, Brown JR, et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv 2019;3:1553–1562.
  69. [68] Fraser G, Cramer P, Demirkan F, et al. Updated results from the phase 3 HELIOS study of ibrutinib, bendamustine, and rituximab in relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Leukemia 2019;33:969–980.
  70. [69] O'Brien SM, Lamanna N, Kipps TJ, et al. A phase 2 study of idelalisib plus rituximab in treatment-naïve older patients with chronic lymphocytic leukemia. Blood 2015;126:2686–2694.
  71. [70] Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014;370:997–1007.
  72. [71] Zelenetz AD, Barrientos JC, Brown JR, et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol 2017;18:297–311.
  73. [72] Flinn IW, Hillmen P, Montillo M, et al. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood 2018;132:2446–2455.
  74. [73] Cramer P, von Tresckow J, Bahlo J, et al. Bendamustine followed by obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2-BAG): primary endpoint analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 2018;19:1215–1228.
  75. [74] Flinn IW, Gribben JG, Dyer MJS, et al. Phase 1b study of venetoclax-obinutuzumab in previously untreated and relapsed/refractory chronic lymphocytic leukemia. Blood 2019;133:2765–2775.
  76. [75] Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: results from the full population of a phase II pivotal trial. J Clin Oncol 2018;36:1973–1980.
  77. [76] Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 2016;374:311–322.
  78. [77] Seymour JF, Ma S, Brander DM, et al. Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. Lancet Oncol 2017;18:230–240.
  79. [78] Seymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 2018;378:1107–1120.
  80. [79] Jones JA, Mato AR, Wierda WG, et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 2018;19:65–75.
  81. [80] Coutre S, Choi M, Furman RR, et al. Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy. Blood 2018;131:1704–1711.
  82. [81] Rogers KA, Huang Y, Ruppert AS, et al. Phase 1b study of obinutuzumab, ibrutinib, and venetoclax in relapsed and refractory chronic lymphocytic leukemia. Blood 2018;132:1568–1572.
  83. [82] Eyre TA, Kirkwood AA, Gohill S, et al. Efficacy of venetoclax monotherapy in patients with relapsed chronic lymphocytic leukaemia in the post-BCR inhibitor setting: a UK wide analysis. Br J Haematol 2019;185:656–669.
Štítky
Hematologie a transfuzní lékařství Interní lékařství Onkologie

Článek vyšel v časopise

Transfuze a hematologie dnes

Číslo Online only

2020 Číslo Online only

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Jak lze diagnostikovat mnohočetný myelom v praxi praktického lékaře?
nový kurz
Autoři: MUDr. Jan Straub

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Inhibitory karboanhydrázy v léčbě glaukomu
Autoři: as. MUDr. Petr Výborný, CSc., FEBO

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

Nová funkce oznámení

všimli jsme si, že se zajímáte o obsah na našem webu. Využijte nové funkce zapnutí webových notifikací a nechte se informovat o nejnovějším obsahu.

Zjistit více