Unexpected low genetic variation in the South American hystricognath rodent Lagostomus maximus (Rodentia: Chinchillidae)


Autoři: María Constanza Gariboldi aff001;  Pablo Ignacio Felipe Inserra aff001;  Sergio Lucero aff002;  Mauricio Failla aff004;  Sergio Iván Perez aff002;  Alfredo Daniel Vitullo aff001
Působiště autorů: Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina aff001;  Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina aff002;  División de Mastozoología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina aff003;  Proyecto Patagonia Noreste, Río Negro, Argentina aff004;  División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de la Plata, Buenos Aires, Argentina aff005
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0221559

Souhrn

The South American plains vizcacha, Lagostomus maximus inhabits primarily the Pampean and adjoining Espinal, Monte and Chaquenean regions of Argentina. In order to study the population genetic structure of L. maximus, a fragment of 560 bp of the mitochondrial DNA hypervariable region 1from 90 individuals collected from the 3 subspecies and 8 groups along Argentina was amplified and analyzed. We found 9 haplotypes. The haplotype network did not show an apparent phylogeographical signal. Although low levels of genetic variation were found in all the subspecies and groups analyzed, a radiation of L. maximus would have occurred from the North and Center of the Pampean region toward the rest of its geographic range in Argentina. Low levels of genetic diversity, the existence of a single genetically distinct population in Argentina and changes of its effective size indicate that metapopulation processes and changes in human population dynamics during the late-Holocene were important factors shaping the population genetic structure of L. maximus in Argentina.

Klíčová slova:

Biology and life sciences – Evolutionary biology – Genetic polymorphism – Genetics – Population genetics – Phylogeography – Heredity – Genetic mapping – Haplotypes – DNA – Conservation genetics – Population biology – Population metrics – Population size – Biogeography – Biochemistry – Nucleic acids – Forms of DNA – Mitochondrial DNA – Conservation biology – Ecology and environmental sciences – Conservation science – Earth sciences – Geography – People and places – Geographical locations – South America – Argentina


Zdroje

1. Jackson JE, Branch LC, Villareal D. Lagostomus maximus. Mamm Species. 1996; 543: 1–6.

2. Spotorno AE, Patton JL. Superfamily Chinchilloidea Bennett, 1833. In: Patton JL, Pardiñas UFJ, D'Elia G, editors. Mammals of South America Vol 2: Rodents. Chicago: University of Chicago Press; 2015. pp. 762–783.

3. Llanos AC, Crespo JA. Ecología de la vizcacha (Lagostomus maximus maximus Blainv.) en el nordeste de la Provincia de Entre Ríos. Rev Invest Agr. 1952; 6: 289–378.

4. Branch LC. Intergroup and intragroup spacing in the plains vizcacha (Lagostomus maximus). J Mammal. 1993; 74: 890–900.

5. Branch LC, Villarreal D, Fowler GS. Recruitment, dispersal, and group fusion in a declining population of the plains vizcacha (Lagostomus maximus; Chinchillidae). J Mammal. 1993; 74: 9–20.

6. Branch L, Villarreal D, Machicote M. Conservation challenges of ecosystem engineers: case studies from grasslands and shrublands of North and South America. The Open Country. 2002; 4: 37–48.

7. Machicote M, Branch LC, Villarreal D. Burrowing owls and burrowing mammals: are ecosystem engineers interchangeable as facilitators? OIKOS. 2004; 106: 527–535.

8. Hierro JL, Clark KL, Branch LC, Villarreal D. Native herbivore exerts contrasting effects on fire regime and vegetation structure. Oecologia. 2011; 166: 1121–1129. doi: 10.1007/s00442-011-1954-8 21384177

9. Branch LC, Pessino M, Villarreal D. Response of pumas to a population decline of the plains vizcacha. J Mammal. 1996; 77, 1132–1140.

10. Jensen F, Willis MA, Leopardo NP, Espinosa MB, Vitullo AD. The ovary of the gestating South American plains vizcacha (Lagostomus maximus): suppressed apoptosis and corpora lutea persistence. Biol Reprod. 2008; 79: 240–246. doi: 10.1095/biolreprod.107.065326 18448845

11. Inserra PIF, Leopardo NP, Willis MA, Freysselinard AL, Vitullo AD. Quantification of healthy and atretic germ cells and follicles in the developing and post-natal ovary of the South American plains vizcacha, Lagostomus maximus: evidence of continuous rise of the germinal reserve. Reproduction. 2014; 147: 199–209. doi: 10.1530/REP-13-0455 24231369

12. Fraunhoffer NA, Jensen F, Leopardo N, Inserra PIF, Abuelafia AM, Espinosa MB, et al. Hormonal behavior correlates with follicular recruitment at mid-gestation in the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha). Gen Comp Endocr. 2017; 250: 162–174. doi: 10.1016/j.ygcen.2017.06.010 28645634

13. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 1989.

14. Avise JC. Molecular markers. Natural history and evolution. New York: Chapman & Hall; 1994.

15. Pope LC, Sharp A, Moritz C. Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci. Mol Ecol. 1996; 5: 629–640. 8873466

16. Perez SI, Postillone MB, Rindel D, Gobbo D, Gonzalez PN, Bernal V. Peopling time, spatial occupation and demography of Late Pleistocene–Holocene human population from Patagonia. Quatern Int. 2016; 425: 214–223.

17. Rivera DS, Vianna JA, Ebensperger LA, Palma RE. Phylogeography and demographic history of the Andean degu, Octodontomys gliroides (Rodentia: Octodontidae). Zool J Linn Soc-Lond. 2016; 178: 410–430.

18. Diringer B, Pretell K, Avellan R, Chanta C, Cedeño V, Gentile G. Genetic structure, phylogeography, and demography of Anadara tuberculosa (Bivalvia) from East Pacific as revealed by mtDNA: Implications to conservarion. Ecol Evol. 2019; 9: 4392–4402. doi: 10.1002/ece3.4937 31031914

19. Birky CW Jr, Maruyama T, Fuerst P. An approach to population genetic and evolutionary genetic theory for genes in mitochondrial and chloroplasts, and some results. Genetics. 1983; 103: 513–527. 6840539

20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23: 2947–2948. doi: 10.1093/bioinformatics/btm404 17846036

21. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25: 1451–1452. doi: 10.1093/bioinformatics/btp187 19346325

22. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999; 16: 37–48. doi: 10.1093/oxfordjournals.molbev.a026036 10331250

23. Leigh JW, Bryant D. PopART: Full-feature software for haplotype network construction. Methods Ecol Evol. 2015; 6:1110–1116.

24. Excoffier L, Lischer HEL. ARLEQUIN suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010; 10: 564–567. doi: 10.1111/j.1755-0998.2010.02847.x 21565059

25. Nielsen R, Wakeley JW. Distinguishing migration from isolation: An MCMC approach. Genetics. 2001; 158: 885–896. 11404349

26. Benjamini Y, Yekutieli D. The control of false discovery rate under dependency. Ann Stat. 2001; 29: 1165–1188.

27. Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992; 9: 552–569. doi: 10.1093/oxfordjournals.molbev.a040727 1316531

28. Schneider S, Excoffier L. Estimation of the past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics, 1999; 152: 1079–1089. 10388826

29. Harpending HC. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol. 1994; 66: 591–600. 8088750

30. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: A software platform for Bayesian Evolutionary Analysis. PLOS Comput Biol. 2014; 10: e1003537. doi: 10.1371/journal.pcbi.1003537 24722319

31. Upham NS, Patterson BD. Evolution of caviomorph rodents: a complete phylogeny and timetree for living genera. In: Vasallo AI, Antenucci D, editors. Biology of caviomorph rodents: diversity and evolution. Buenos Aires: SAREM; 2015. pp. 63–120.

32. Posada D. JModelTest Phylogenetic model averaging. Mol Biol Evol. 2008; 25: 1253–1256. doi: 10.1093/molbev/msn083 18397919

33. Ho SYW, Shapiro B, Phillips M, Cooper A, Drummond AJ. Evidence for time dependency of molecular rate estimates. Syst Biol, 2007; 56: 515–522. doi: 10.1080/10635150701435401 17562475

34. Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, et al. Time‐dependent rates of molecular evolution. Mol Ecol. 2011; 20: 3087–3101. doi: 10.1111/j.1365-294X.2011.05178.x 21740474

35. Molak M, Ho SYW. Prolonged decay of molecular rate estimates of metazoan mitochondrial DNA. PeerJ 2015; 3: e821. doi: 10.7717/peerj.821 25780773

36. Posada D, Crandall KA. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol. 2001; 16: 37–45. 11146143

37. Avise JC. Phylogeography: The History and Formation of Species. Massachusetts: Harvard University Press; 2000.

38. Grant WS, Bowen BW. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered. 1998; 89: 415–426.

39. Ray N, Currat M, Excoffier L. Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol. 2003; 20: 76–86. doi: 10.1093/molbev/msg009 12519909

40. Triant DA, DeWoody JA. The occurrence, detection, and avoidance of mitochondrial DNA translocations in mammalian systematics and phylogeography. J Mammal. 2007; 88: 908–920.

41. Leite LAR. Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. Biota Neotrop. 2012; 12: 301–308.

42. Mao X, Dong J, Hua P, He G, Zhang S, Rossiter SJ. Heteroplasmy and ancient translocation of mitochondrial DNA to the nucleus in the chinese horseshoe bat (Rhinolophus sinicus) complex. PLoS ONE. 2014; 9: e98035. doi: 10.1371/journal.pone.0098035 24842827

43. Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol. 2005; 20: 229–237. doi: 10.1016/j.tree.2005.02.010 16701374

44. Harrison RG, Larson EL. Hybridization, introgression, and the nature of species boundaries. J Hered; 2014: 795–809. doi: 10.1093/jhered/esu033 25149255

45. Pons JM, Sonsthagen S, Dove C, Crochet PA. Extensive mitochondrial introgression in North American Herring Gull (Larus smithsonianus) with little nuclear DNA impact. Heredity. 2014; 112: 226–239. doi: 10.1038/hdy.2013.98 24105440

46. Mastrantonio V, Porretta D, Urbanelli S, Crasta G, Nascetti G. Dynamics of mtDNA introgression during species range expansion: insights from an experimental longitudinal study. Sci Rep. 2016; 6: 30355. doi: 10.1038/srep30355 27460445

47. Barrientos G, Perez SI. Was there a population replacement during the Late mid-Holocene in the southeastern Pampas of Argentina? Archaeological evidence and paleoecological basis. Quatern Int. 2005; 132: 95–105.

48. Quattrocchio ME, Borromei AM, Deschamps CM, Grill SC, Zavala CA. Landscape evolution and climate changes in the Late Pleistocene-Holocene, southern Pampa (Argentina): Evidence from palynology, mammals and sedimentology. Quatern Int. 2008; 181: 123–138.

49. Prado LF, Wainer J, Chiessi CM, Ledru MP, Turcq B. A mid-Holocene climate reconstruction for eastern South America. Clim Past. 2013; 9: 2117–2133.

50. Patrolongo P, Piovan MJ, Cuadrado DG, Gómez EA. Coastal landscape evolution on the western margin of the Bahía Blanca Estuary (Argentina) mirrors a non-uniform sea-level fall after the mid-Holocene highstand. Geo-Mar Lett. 2017; 37: 373–384.

51. Karl SA, Toonen RJ, Grant WS, Bowen BW. Common misconceptions in molecular ecology: echoes of the modern synthesis. Mol Ecol. 2012; 21: 4171–4189. doi: 10.1111/j.1365-294X.2012.05576.x 22574714

52. Grant WS. Problems and Cautions With Sequence Mismatch Analysis and Bayesian Skyline Plots to Infer Historical Demography. J Hered. 2015; 106: 333–346. doi: 10.1093/jhered/esv020 25926628

53. Martínez G, Flensborg G, Bayala PD. Chronology and human settlement in northeastern Patagonia (Argentina): Patterns of site destruction, intensity of archaeological signal, and population dynamics. Quatern Int. 2013; 301: 123–134.

54. Martínez G, Prates L, Flensborg G, Stoessel L, Alcaráz AP, Bayala P. Radiocarbon trends in the Pampean region (Argentina). Biases and demographic patterns during the final Late Pleistocene and Holocene. Quatern Int. 2015; 356: 89–110.

55. Muscio HJ, Lopez GEJ. Radiocarbon dates and anthropogenic signal in the South-Central Andes (12,500–600 cal. years BP). J Archaeol Sci. 2016; 65: 93–102.

56. Nores R, Fabra M, García A, Demarchi DA. Diversidad genética en restos humanos arqueológicos del sitio El Diquecito (costa sur, Laguna de Mar Chiquita, Provincia de Córdoba). Rev Arg Antrop Biol. 2017; 19: 1–12.

57. Quintana CA, Mazzanti DL. Las vizcachas pampeanas (Lagostomus maximus, Rodentia) en la subsistencia indígena del Holoceno Tardío de las sierras de Tandilia Oriental (Argentina). Lat Am Antiq. 2011; 22: 253–270.

58. Stoessel L, Martínez G. El proceso de intensificación en la transición pampeano-patagónica oriental. Discusión y perspectivas comparativas con regiones aledañas. Comechingonia. 2014; 18: 65–94.

59. Rafuse DJ, Kaufmann CA, Gutiérrez MA, González ME, Scheifler NA, Álvarez MC, et al. Taphonomy of modern communal burrow systems of the Plains vizcacha (Lagostomus maximus, Chinchillidae) in the Pampas region of Argentina: implications for the fossil record. Hist Biol. 2017; 31: 517–534.

60. Mitchell P. Horse Nations: The worldwide impact of the horse on indigenous societies post-1492. Oxford: Oxford University Press; 2015.

61. Schmid M, Guillaume F. The role of phenotypic plasticity on population differentiation. Heredity. 2017; 119: 214–225. doi: 10.1038/hdy.2017.36 28745716

62. Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution. 2008; 62: 316–336. doi: 10.1111/j.1558-5646.2007.00299.x 17999721

63. Pannell JR, Charlesworth B. Effects of metapopulation processes on measures of genetic diversity. Philos T R Soc B. 2000; 355: 1851–64.

64. Tero N, Aspi J, Siikamäki P, Jäkäläniemi A, Tuomi J. Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol Ecol. 2003; 12: 2073–2085. 12859630

65. Lande R. Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol. 1998; 40: 259–269.

66. Frankham R, Ballou JD, Briscoe DA, editors. Introduction to conservation genetics. Cambridge: Cambridge University Press; 2010.

67. Roach N. Lagostomus maximus; 2016. Database: The IUCN Red List of Threatened Species. Available from: https://www.iucnredlist.org/species/11170/78320596.

68. Ojeda RA, Chillo V, Díaz Isenrath GB. Libro rojo de mamíferos amenazados de la Argentina. Buenos Aires: SAREM; 2012.

69. Muzzachiodi N, Sabattini RA. La mastofauna como indicador de conservación del bosque nativo en un área protegida de Entre Ríos. Revista Científica Agropecuaria. 2002; 6: 5–15.

70. Mérida E, Ahot J. Talares bonaerenses y su conservación. Buenos Aires: Fundación de Historia Natural "Félix de Azara"; 2006.

71. Berduc A, Bierig PL, Donello AV, Walker CH. Lista actualizada y análisis preliminar del uso del hábitat de medianos y grandes mamíferos en un área natural protegida del espinal con invasión de leñosas exóticas, Entre Ríos, Argentina. FABICIB. 2010; 14: 9–27.

72. Barberis IM, Romano M, Montani E, Cordini C, Derlindati EJ. Registro de vizcachas (Lagostomus maximus) en Pampa de las Lagunas, sur de Santa Fe, Argentina. Nótulas Faunísticas. 2015; 182: 1–6.

73. Moritz C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol Evol. 1994; 9: 373–375. doi: 10.1016/0169-5347(94)90057-4 21236896

74. Crandall KA, Bininda Emonds ORP, Mace GM, Wayne RK. Considering evolutionary processes in conservation biology. Trends Ecol Evol. 2000; 15: 290–295. 10856956

75. Witzenberger KA, Hochkirch A. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers Conserv. 2011; 20: 1843–1861.


Článek vyšel v časopise

PLOS One


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Výhody léčby pacientů s DM 2. typu GLP-1 agonisty
nový kurz
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Syndrom suchého oka – diagnostika, komplikace a léčba
Autoři: MUDr. Petr Výborný, CSc., FEBO

Systémová léčba psoriázy
Autoři: MUDr. Jiří Horažďovský, Ph.D

Klinická farmakokinetika betablokátorů
Autoři:

Současné možnosti terapie osteoartrózy
Autoři: MUDr. Jakub Holešovský

Všechny kurzy
Kurzy Doporučená témata