Studying the link between physiological performance of Crotalaria ochroleuca and the distribution of Ca, P, K and S in seeds with X-ray fluorescence


Autoři: Mayara Fávero Cotrim aff001;  Josué Bispo da Silva aff002;  Flávia Mendes dos Santos Lourenço aff003;  Anielli Verzotto Teixeira aff001;  Ricardo Gava aff001;  Charline Zaratin Alves aff001;  Ana Carina da Silva Candido aff001;  Cid Naudi Silva Campos aff001;  Márcio Dias Pereira aff004;  Salvador Barros Torres aff005;  Gianluigi Bacchetta aff006;  Paulo Eduardo Teodoro aff001
Působiště autorů: Federal University of Mato Grosso do Sul—UFMS, Chapadão do Sul, MS, Brazil aff001;  Federal University of Mato Grosso do Sul—UFMS, Três Lagoas, MS, Brazil aff002;  State University of Sao Paulo–UNESP, Ilha Solteira, SP, Brazil aff003;  Federal University of Rio Grande do Norte–UFRN, Natal, RN, Brazil aff004;  Federal University of the Semi-arid–UFERSA, Mossoró, RN, Brazil aff005;  Universitá Degli Studi Di Cagliari, Cagliari—CA, Italy aff006
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222987

Souhrn

This study describes the use of X-ray fluorescence spectroscopy in Crotalaria ochroleuca seed technology. This work evaluated X-ray fluorescence techniques to estimate the physiological performance of different C. ochroleuca seed coat colours based on the concentration and distribution of Ca, P, K, and S in seed structures. The treatments consisted of seeds separated by coat colours (yellow, green, and red) and a control treatment (colour mix according to their natural occurrence in commercial lots), and was carried out in a completely randomized design, with four replications. The physiological performance was evaluated by analyzing the water content, germination, first germination count, germination speed index, electrical conductivity, seedling emergence, and seedling length and dry mass. X-ray fluorescence spectroscopy techniques were carried out with quantitative analyses (Ca, P, K, and S concentration in the seed coat and the whole seed) and qualitative analyses (macronutrient mapping). The EDXRF and μ-XRF techniques are efficient and promising to differentiate the physiological performance of C. ochroleuca seeds, based on the concentration and distribution of Ca, P, K, and S in different structures. Ca is predominant in the seed coat, and K, S, and P are found throughout the embryonic axis. Seeds of yellow and green coats have higher nutrients concentration and distribution in the embryonic axis, revealing high germinative capacity and physiological performance. Seeds of red coat have higher nutrients concentration in the seed coat and lower assimilation, showing less vigour, which interferes directly in the quality of commercial lots.

Klíčová slova:

Electric conductivity – Embryos – Seed germination – Seedlings – Seeds – Seed coat – Radicle – Hypocotyl


Zdroje

1. Matthews S, Powell A (2006) Eletrical conductivity vigour test: Physiological basis and use. Seed Testing International 131: 32–35

2. Kopittke PM, Punshon T, Paterson DJ, Tappero RV, Wang P, Blamey FPX, van der Ent A, Lombi E (2018) Synchrotron based X-ray fluorescence microscopy as a technique for imaging of elements in plants. Plant Physiology Preview. doi: 10.1104/pp.18.00759 30108140

3. Rodrigues ES, Gomes MHF, Duran NM, Cassanji JGB, da Cruz TNM, Sant’Anna Neto A, Savassa SM, Almeida E, Carvalho HWP (2018) Laboratory microprobe X-ray fluorescence in plant science: Emerging applications and case studies. Frontier Plant Science 9: 1–15

4. White PJ, Veneklaas EJ (2012) Nature and nurture: the importance of seed phosphorus content. Plant and Soil 357: 1–8

5. Moraghan JT, Etchevers JD, Padilla J (2006) Contrasting accumulations of calcium and magnesium in seed coats and embryos of common bean and soybean. Food Chemistry, Easton 95: 554–561

6. Lu L, Tian S, Liao H, Zhang J, Yang X, Labavitch JM, Chen W (2013) The distribution of metallic elements in rice seeds (Oryza sativa L.) and the reallocation during germination based on X-ray fluorescence of Zn, Fe, K, Ca and Mn. Plos One 8: 57360

7. Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environment 29:382–395

8. Capaldi FR, Gratão PL, Reis A, Lima LW, Azevedo RA (2015) Sulfur metabolism and stress defense responses in plants. Tropical Plant Biology 8:60–73

9. Debiasi H, Franchini JC, Dias WP, Ramos Junior EU, Balbinot Junior AA (2016) Cultural practices during the soybean off-season for the control of Pratylenchus brachyurus. Pesquisa agropecuária brasileira 51:10

10. Sikuku P, Musyimi D, Kariuki S, Okello SV (2013) Responses of slender leaf rattlebox (Crotalaria ochroleuca) to water deficit. Journal of Biodiversity and Environmental Sciences 3: 245–252

11. Wang Q, Klassen W, Li Y, Codallo M (2009) Cover crops and organic mulch to improve tomato yield and soil fertility. Agronomy journal, Madison 101: 345–351

12. USDA. United States Department of Agriculture (2018) “Tropic Sun” Sunn hemp for cover crop use during the sugarcane fallow period. Natural resources conservation service, Alexandria, Louisiana, 2011. Available in: <https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/lapmctn10579.pdf>. Access in: Nov 15

13. Borji M, Ghorbanli M, Sarlak M (2007) Some seed traits and their relationship to seed germination, emergence rate, and electrical conductivity in common bean (Phaseolus vulgaris L.). Asian Journal of Plant Science 6:781–787

14. Ertekin M, Kirdar E (2010) Effects of seed coat colour on seed characteristics of honey locust (Gleditsia triacanthos). African Journal of Agricultural Research 5:2434–2438

15. Lee J, Hwang YS, Kim ST, Yoon WB, Han WY, Kang IK, Choung MG (2017) Seed coat colour and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chemistry 214:248–258. doi: 10.1016/j.foodchem.2016.07.066 27507473

16. Dongen JT van, Ammerlaan AMH, Wouterlood M, Aelst AC van, Borstlap AC (2003) Structure of the developing pea seed coat and the post phloem transport pathway of nutrients. Annals of Botany 91:729–737 doi: 10.1093/aob/mcg066 12714370

17. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento (2009) Regras para análise de sementes. Brasília, DF: MAPA/ACS, 395p.

18. Maguire JD (1962) Speed of germination aid in selection and evaluation for seedling emergence and vigour. Crop Science, Madison 2:176–77

19. Marcos-Filho J, Vieira RD (2009) Seed vigour tests: principles—conductivity tests. In: BAALBAKI R. et al. (Org.). Seed Vigour Testing Handbook. Contribuition n° 32 to the Handbook on Seed Testingp. 77–90.

20. Nakagawa J (1999) Testes de vigour baseados no desempenho de plântulas. In: Krzyzanowski FC, Vieira RD, França Neto JB(Ed). Vigour de sementes: conceitos e testes. Londrina: ABRATES, cap. 2, p. 24.

21. Bhering LL (2017) Rbio: a tool for biometric and statistical analysis using the R platform. Crop Breeding and Applied Biotechnology17: 187–190

22. Marcos Filho J(2015) Fisiologia de sementes de plantas cultivadas. 2. ed. Londrina: ABRATES660 p.

23. BRASIL. Ministério da Agricultura, Pecuária e de Abastecimento. Instrução Normativa n. 30, de 21/05/2008. Normas e padrões para produção e comercialização de sementes de espécies forrageiras de clima tropical. Diário Oficial da União, Brasília, DF, Anexo IV.Availablefrom:<http://www.adagri.ce.gov.br/docs/legislacao_vegetal/IN_30_de_21.05.2008.pdf>Accessed: Nov, 04, 2018.

24. Bewley JD, Bradford K, Hilhorst H, Nonogaki H (2013) Seeds: Physiology of development, germination and dormancy. 3. ed. New York: Springer 392 p.

25. Tillmann MAA, Menezes NL (2012) Manual de análise de sementes. 3. ed. In: Peske ST; Villela FA, Meneghello GE(Eds). Sementes: fundamentos científicos e tecnológicos. cap. 3, p. 161–272

26. Radchuk V, Borisjuk L (2014) Physical, metabolic and developmental functions of the seed coat. Frontier Plant Science 5:510

27. Vogiatzaki E, Baroux C, Jung JY, Poirier Y (2017) PHO1 exports phosphate from the chalazal seed coat to the embryo in developing Arabidopsis seeds. Current biology 27:2893–2900 doi: 10.1016/j.cub.2017.08.026 28943092

28. Mingoti AS (2005) Análise de dados através de métodos de estatística multivariada: Uma abordagem aplicada. 1. ed. Belo Horizonte: Editora UFMG, 295 p.

29. Stadler R, Lauterbach C, Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiology139:701–712 doi: 10.1104/pp.105.065607 16169962

30. Bevilaqua GAP, Silva Filho PM, Possenti JC (2002) Aplicação foliar de cálcio e boro e componentes de rendimento e qualidade de sementes de soja. Ciência Rural 32:31–34

31. Clark GB, Morgan RO, Fernandez MP, Roux SJ (2012) Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytologist 196:695–712. doi: 10.1111/j.1469-8137.2012.04308.x 22994944

32. Taiz L, Zeiger E (2017) Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed,857 p.

33. Malavolta E (2008) O futuro da nutrição de plantas tendo em vista aspectos agronômicos, econômicos e ambientais. Piracicaba: IPNI, 10 p.

34. Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell, 17:2142–2155 doi: 10.1105/tpc.105.032508 16061961

35. Singh KL, Chaudhuri A, Kar RK (2014) Superoxide and its metabolism during germination and axis growth of Vigna radiata (L.) Wilczek seeds. Plant Signal Behavior

36. Ramos L, Pataco LM, Mourinho MP, Lidon F, Reboredo F, Pessoa MF, Carvalho ML, Santos JP, Guerra M (2016) Elemental mapping of biofortified wheat grains using micro X-ray fluorescence. Spectrochimica Acta Part B 16:30–36

37. Gupta RK, Gangoliya SS, Singh NK (2015) Reduction of phytic acid and increase of bioavailable micronutrients in food grains. Journal Food Science Technology 52: 676–684

38. Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Science 177: 281–296

39. Marschner H (1995) Mineral nutrition of higher plants. 2. ed. London: Academic Press, 1995, 889 p.

40. Jiang C, Gao X, Liao L, Harberd NP, Fu X (2007) Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in arabidopsis. Plant Physiology 145: 1460–1470 doi: 10.1104/pp.107.103788 17932308

41. Nadeem M, Mollier A, Morel C, Vives A, Prud’homme L, Pellerin S (2011) Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant and Soil 11: 231–244

42. Nieves-Cordones M, Al Shiblawi FR, Sentenac H (2016) Roles and transport of sodium and potassium in plants. In: Sigel A, Sigel H, Sigel RKO(eds). The alkali metal ions: their role for life. Berlin: Springer-Verlang 16:628

43. Steinbrecher T, Leubner-Metzger G (2017) The biomechanics of seed germination. Journal Experimental Botany 68:765–783

44. Yan D, Duermeyer L, Leoveanu C, Nambara E (2014) The functions of the endosperm during seed germination. Plant Cell Physiology 55:1521–1533 doi: 10.1093/pcp/pcu089 24964910

45. Gotor C, Marin AML, Moreno I, Aroca A, García I, Romero LC (2015) Signaling in the plant cytosol: cysteine or sulfide? Amino Acids, 47:2155–2164 doi: 10.1007/s00726-014-1786-z 24990521

46. Stulen I, De Kok LJ (2012) Foreword: Exploring interactions between sulfate and nitrate uptake at a whole plant level. In: DE KOK, L. et al. (Eds). Sulfur Metabolism in Plants. Proceedings of the International Plant Sulfur Workshop, Dordrecht, v. 1

47. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology 62: 157–184. doi: 10.1146/annurev-arplant-042110-103921 21370978


Článek vyšel v časopise

PLOS One


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
nový kurz
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Léčba bolesti v ordinaci praktického lékaře
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se