Spatio-temporal variations in wheat aphid populations and their natural enemies in four agro-ecological zones of Pakistan

Autoři: Muhammad Faheem aff001;  Shafqat Saeed aff003;  Asif Sajjad aff004;  Su Wang aff005;  Abid Ali aff006
Působiště autorů: Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan aff001;  CABI South East Asia, MARDI, Serdang, Selangor, Malaysia aff002;  Department of Entomology, Faculty of Agriculture & Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan aff003;  Department of Entomology, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan aff004;  Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, PR China aff005;  Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan aff006
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222635


Aphids are major pests of wheat crop in Pakistan inflicting considerable economic losses. A better knowledge of landscape scale spatial distribution of aphids and their natural enemies could be used to improve integrated pest management programs. Therefore, the present study aimed to document spatio-temporal variations in populations of wheat aphids and their natural enemies in Pakistan. The 2-year survey study was carried out at ten experimental farms located in five districts of four contrasted agro-ecological zones of eastern Pakistan (Punjab area) i.e. District Chakwal in arid zone, Gujranwala in rice-cropped zone, Faisalabad in central mixed-cropped zone, and Khanewal and Multan in cotton-cropped zone. The dominant aphid species i.e. Schizaphis graminum, Rhopalosiphum padi, R. maidis and Sitobion avenae varied significantly among the five districts surveyed. The population of S. graminum was observed more abundant in arid, R. padi in rice, S. avenae in aird and rice, and R. maidis in cotton-I zones. Aphids ended their population dynamics on 25th March in central mixed-cropped zone and 12th April in other three zones. Various species of natural enemies, mainly Coccinella septumpunctata, C. undecimpunctata, Menochilus sexmaculata, Chrysoperla carnea, Syrphidae and parasitoid mummies were inconsistently observed in four agro-ecological zones. The population of C. septumpunctata, was observed more abundant in rice zone, C. undecimpunctata and C. carnea in cotton-I and arid zones, M. sexmaculata in cotton-I and II zones, Syrphidae in cotton-I zone and parasitoid mummies in rice and arid zones. There were no clear relationships between aphid and the natural enemy populations. The present study may serve as a baseline regarding distribution of wheat aphids and their natural enemies and the results provided insights for further studies on the potential top-down (natural enemies) versus bottom-up (fertilization and irrigation regimes) forces in management of wheat aphids in eastern Pakistan.

Klíčová slova:

Cereal crops – Cotton – Population dynamics – Rice – Seasons – Wheat – Aphids – Pakistan


1. Pakissan. Spotlight on Pakistan’s wheat economy. 2017. Available from:

2. Asmat R. Pakistan grain and feed update. USDA Global Agriculture Information Network. 2018; Report No. PK1823.

3. Khan AM, Khan AA, Afzal M, Iqbal MS. Wheat crop yield losses caused by the aphids infestation. J Biofertil Biopestici. 2012; 3:122. doi: 10.4172/2155-6202.1000122

4. Aheer GM, Haq I, Ulfat M, Ahmad KJ, Ali A. Effects of sowing dates on aphids and grain yield in wheat. J Agric Res. 1993; 31: 75–79.

5. Kibe AM, Singh S, Kalrac N. Water-nitrogen relationships for wheat growth and productivity in late sown conditions. Agric Water Manage. 2006; 84: 221–228.

6. Memon RA, Bhatti GR, Khalid S, Mallah A, Ahmed S. Illustrated weed flora of wheat crop of Khairpur District, Sindh. Pak J Bot. 2013; 45: 39–47.

7. Aheer GM, Ali A, Munir M. Abiotic factors effect on population fluctuation of alate aphids in wheat.–J Agric Res. 2008; 46: 367–371.

8. Angood BA, Stewart RK. Effect of cereal aphid infestation on grain yield and percentage protein of barley, wheat and oats in Southwestern Quebec.–Can Entomol. 1980; 112: 681–686.

9. Hullé M, Chaubet B, Turpeau E, Simon JC. Encyclop’Aphid: a website on aphids and their natural enemies. Entomol Gen. 2019. doi: 10.1127/entomologia/2019/0867

10. Gair R, Jenkins JEE, Lester E. Cereal pests and diseases.–Farming Press Ltd., UK, 1983; pp. 54–80.

11. Fiebig M, Poehling HM. Host-plant selection and population dynamics of the grain aphid Sitobion avenae (F.) on wheat infected with Barley Yellow Dwarf Virus.–Bull.IOBC/WPRS.1998; 21: 51–62.

12. Aslam M, Razaq M, Akhter W, Faheem M, Ahmad F. Effect of sowing date of wheat on aphid (Schizaphis graminum RONDANI) population. Pak Entomol. 2005; 27: 79–82.

13. Khan SM, Maqbool R. Varietal performance of wheat (Triticum aestivum) against wheat aphid (Macrosiphum miscanthi) and its chemical control with different doses of insecticides.–Asian J Plant Sci. 2002; 1: 205–207.

14. Mahmood R, Poswal MA, Shehzad A. Distribution, host range and seasonal abundance of Sipha sp. (Homoptera: Aphididae) and their natural enemies in Pakistan.–Pak J Biol Sci. 2002; 5: 47–50.

15. Khan SA. Studies on aphid distribution pattern and their natural enemies in wheat and maize crop. PhD thesis.–Department of Plant Protection, Agricultural University Peshawar-Pakistan. 2005; pp 179.

16. Aslam M, Razaq M, Ahmad F, Faheem M, Akhter W. Population of aphid (Schizaphis graminum R.) on different varieties/lines of wheat (Triticum aestivum L.). Int J Agric Bio. 2004; l6: 974–977.

17. Inayat TP, Rana SA, Rana N, Ruby T, Sadique MJI, Abbas MN. Predation rate in selected coccinellid (coleoptera) predators on some major aphids and coccinellids (Hemipteran) pests. Int J Agric Biol. 2011;13: 427–430.

18. PARC. Agro-ecological regions of Pakistan. Pakistan Agriculture Research Council, Islamabad. 1980.

19. Khattak MK, Riazuddin, Anayatullah N. Population dynamics of aphids (Aphididae: Homoptera) on different wheat cultivars and response of cultivars to aphids in respect of yield and yield related parameters. Pak J Zool. 2007; 39:109–115.

20. Saleem S, Ullah F, Ashfaque M. Population dynamics and natural enemies of aphids on winter wheat in Peshawar, Pakistan. Pak J Zool. 2009; 41: 505–513.

21. Zeb Q, Badshah H, Ali H, Shah RA, Rehman M. Population of aphids on different varieties/lines of wheat and their effect on yield and thousands grain weight. Sarhad J Agric. 2011; 27: 443–450.

22. Mann JA, Tatchel GM, Dupuch MJ, Harrington R, Clark SJ, Mccartney HA. Movement of apterous Sitobion avenae (Homoptera: Aphididae) in response to leaf disturbances caused by wind and rain. Annals Appl Biol. 1995; 125:417–427.

23. Elliott NC, Kieckhefer RW. Response by coccinellids to spatial variation in cereal aphid density. Popul Ecol. 2000; 42: 81–90.

24. Brewer MJ, Elliott NC. Biological control of cereal aphids in North America and mediating effects of host plant and habitat manipulations. Ann Rev Entomol. 2004; 49: 219–242.

25. Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. 2007; 52: 81–106. doi: 10.1146/annurev.ento.52.110405.091440 16842032

26. Decourtye A, Henry M, Desneux N. Overhaul pesticide testing on bees. Nature, 2013; 497:188.

27. Desneux N, Pham-Delègue MH, Kaiser L. Effects of sublethal and lethal doses of lambda-cyhalothrin on oviposition experience and host searching behaviour of a parasitic wasp, Aphidius ervi. Pest Manag Sci. 2004; 60: 381–89. doi: 10.1002/ps.822 15119601

28. Desneux N, Wajnberg E, Fauvergue X, Privet S, Kaiser L. Sublethal effects of a neurotoxic insecticide on the oviposition behaviour and the patch-time allocation in two aphid parasitoids, Diaeretiella rapae and Aphidius matricariae. Entomol Exp Appl. 2004; 112:227–235.

29. Biondi A, Campolo O, Desneux N, Siscaro G, Palmeri V, Zappalà L. Life stage-dependent susceptibility of Aphytis melinus DeBach (Hymenoptera: Aphelinidae) to two pesticides commonly used in citrus orchards. Chemosphere, 2015; 128:142–147. doi: 10.1016/j.chemosphere.2015.01.034 25698292

30. Jam NA, Saber M. Sublethal effects of imidacloprid and pymetrozine on the functional response of the aphid parasitoid, Lysiphlebus fabarum. Entomol Gen. 2018; 38:173–190.

31. Mohammed AAH, Desneux N, Fan YJ, Han P, Ali A, Song DL, Gao XW. Impact of imidacloprid and natural enemies on cereal aphids: Integration or ecosystem service disruption? Entomol Gen. 2018; 37:47–61.

32. Liang P, Tian YA, Biondi A, Desneux N, Gao XW. Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology. 2012; 21:1889–1898. doi: 10.1007/s10646-012-0922-3 22661314

33. Liu XL, Tang QL, Li YD, Mateus RC, Liang P, Gao XW. Widespread resistance of the aphid Myzus persicae to pirimicarb across China, and insights on ace2 mutation frequency in this species. Entomol Gen. 2017; 36:285–299.

34. Weisz R, Fleischer S. Site-specific integrated pest management for high value crops: some units for map generation using the Colorado potato beetle (Coleoptera: Chrysomelidae) as a model system. J Econ Entomol. 1995; 88: 1069–1080. doi: 10.1093/jee/88.5.1069 7593891

35. Winder L, Perry JN, Holland JM. The spatial and temporal distribution of the grain aphid, Sitobion avenae in winter wheat. Entomol Exp Appl. 1999; 93: 277–290.

36. Young CL, Wright MG. Seasonal and spatial distribution of banana aphid, Pentalonia nigronervosa (Hemiptera: Aphididae), in banana plantations on Oahu. In: Proc Hawaiian Entomol Soc.– 2005; 37: 73–80.

37. Desneux N, O’Neil RJ, Yoo HJS. Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator and the effects of prey dispersion, predator abundance, and temperature. Environ Entomol.– 2006a; 35: 1342–1349.

38. Desneux N, Rabasse JM, Ballanger Y, Kaiser L. Parasitism of canola aphids in France in autumn. J Pest Sci. 2006b; 79: 95–102.

39. Jankovic M, Plecas M, Sandic D, Popovic A, Petrovic A, Petrovic-Obradovic O, et al. Functional role of different habitat types at local and landscape scales for aphids and their natural enemies. J Pest Sci. 2017; 90: 261–273.

40. Han P, Niu CY, Desneux N. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China. PloS One. 2014a; 9: e102980. doi: 10.1371/journal.pone.0102980 25170907

41. Jaworski CC, Xiao D, Xu QX, Ramirez-Romero R, Guo XJ, Wang S, et al. Varying the spatial arrangement of synthetic herbivore-induced plant volatiles and companion plants to improve conservation biological control. J Appl Ecol. 2019; 56: 1176–1188.

42. Yang F, Xu L, Wu YK, Wang Q, Yao ZW, Zikic V, et al. Species composition and seasonal dynamics of aphid parasitoids and hyperparasitoids in wheat fields in northern China. Sci Rep. 2017; 7: 13989. doi: 10.1038/s41598-017-14441-6 29070808

43. FAO. Fertilizer use by crop in Pakistan, Land and Plant Nutrition Management Service, Land and Water Development Division. Food and Agriculture Organization of the United Nations, Rome. 2004.

44. Stoltz RL, Baird CR, Sandvol LE, Homan HW. Identification keys for insect pests in Pacific Northwest field crops. University of Idaho. 1999. ( Accessed on 10 Nov 2009.

45. Klueken AM, Hau B, Koepke I, Poehling HM. Comparison of techniques to survey populations of cereal aphids (Homoptera: Aphididae) in winter cereals during autumn and spring with special consideration of sample size. J Plant Dis Prot. 2008; 115: 279–287.

46. XLSTAT. XLSTAT Software.–Addinsoft. 2008. Accessed on 20 Aug 2010.

47. Genung MA, Crutsinger GM, Bailey JK, Schweitzer JA, Sanders NJ. Aphid and ladybird beetle abundance depend on the interaction of spatial effects and genotypic diversity. Oecologia. 2012; 168(1):167–74. doi: 10.1007/s00442-011-2080-3 21805301

48. Zhou X, Harrington R, Woiwod IP, Perrey JN, Bale JS, Clark SJ. Effects of temperature on aphid phenology. Global Change Biol. 1995; 1: 303–313.

49. Merrill SC, Holtzer TO, Peairs FB, Lester PJ. Modeling spatial variation of Russian wheat aphid overwintering population densities in Colorado winter wheat. J. Econ. Entomol. 2009; 102(2): 533–541. doi: 10.1603/029.102.0210 19449632

50. Damgaard C, Bruus M, Joergen AA. The effect of spatial variation for predicting aphid epidemics. BiorRxiv. 2018. doi: org/10.1101/367953

51. Frampton GK, Van Den Brink PJ, Gould PJL. Effects of spring drought and irrigation on farmland arthropods in southern Britain. J App Ecol. 2000; 37: 865–883.

52. Ovadia O, Schmitz OJ. Weather variation and trophic interaction strength: sorting the signal from the noise. Oecologia. 2004; 140: 398–406. doi: 10.1007/s00442-004-1604-5 15179581

53. Han P, Lavoir AV, Le Bot J, Amiens-Desneux E, Desneux N. Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Sci Rep. 2014b; 4: 4455. doi: 10.1038/srep04455 24675796

54. Han P, Dong Y, Lavoir AV, Adamowicz S, Bearez P, Wajnberg E et al. Effect of plant nitrogen and water status on the foraging behavior and fitness of an omnivorous arthropod. Eco Evol. 2015a; 5: 5468–5477.

55. Han P, Bearez P, Adamowicz S, Lavoir AV, Desneux N. Nitrogen and water limitations in tomato plants trigger negative bottom-up effects on the omnivorous predator Macrolophus pygmaeus. J Pest Sci. 2015b; 88: 685–691. doi: 10.1007/s10340-015-0662-2

56. Gao GZ, Feng LK, Perkins LE, Sharma S, Lu ZZ. Effect of the frequency and magnitude of extreme temperature on the life history traits of the large cotton aphid, Acyrthosiphon gossypii (Hemiptera: Aphididae): implications for their population dynamics under global warming. Entomol Gen. 2018; 37:103–113

57. Horgan FG, Vu Q, Bernal CC, Ramal AF, Villegas JM, Almazan MLP. Population development of rice black bug, Scotinophara latiuscula (Breddin), under varying nitrogen in a field experiment. Entomol Gen. 2018; 37:19–33.

58. Nguyen LTH, Monticelli LS, Desneux N, Metay-Merrien C, Amiens-Desneux E, Lavoir AV. Bottom-up effect of water stress on the aphid parasitoid Aphidius ervi. Entomol Gen. 2018; 38:15–27.

59. Khan SU, Hassan M, Khan FK, Bari A. Climate classification of Pakistan. Balwois Conference: Republic of Macedonia. 2010; 1–47.

60. Muhlenberg E, Stadler B. Effects of altitude on aphid-mediated processes in the canopy of Norway spruce. Agric For Entomol. 2005; 7: 133–143.

61. Amiri-Jami AR, Sadeghi-Namaghi H. Responses of Episyrphus balteatus DeGeer (Diptera: Syrphidae) in relation to prey density and predator size. J Asia-Pacific Entomol. 2014; 17(3), 207–211.

62. Kafle K. Management of Mustard Aphid Lipaphis erysimi (Kalt.) (Homoptera: Aphididae). Int J App Sci Biotech. 2015; 3(3), 537–540.

63. Krebs CJ. Ecology: The experimental analysis of distribution and abundance. 6th edn. Benjamin Cummings, San Francisco, 2009; pp 655.

64. Begon MC, Townsend R, Harper JL. Ecology from Individuals to Ecosystems.– 4th edn. Malden, Blackwell Publishing, London. 2006; pp 281.

65. Symondson WOC, Sunderland KD, Hgrenstone M. Can generalist predators be effective biocontrol agents? Annu Rev Entomol. 2002; 47: 561–594. doi: 10.1146/annurev.ento.47.091201.145240 11729085

66. Ostman O, Ekborm B, Bengtsson J. Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol Econ. 2003; 45: 149–158.

67. Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. Widespread adoption of Bt-cotton and insecticide decrease promotes biocontrol services. Nature. 2012; 487: 362–365. doi: 10.1038/nature11153 22722864

68. Ali A, Desneux N, Lu Y, Liu B, Wu K. Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China. Sci Rep. 2016; 6: 24273; doi: 10.1038/srep24273 27075171

69. Ali A, Desneux N, Lu YH, Wu KM. Key aphid natural enemies showing positive effects on wheat yield through biocontrol services in northern China. Agrics Ecosyst Environ. 2018; 266:1–9.

70. Holt RD, Lawton JH. The ecological consequences of shared natural enemies.–Annu Rev Ecol Syst. 1994; 25: 495–520.

71. Murdoch WW, Briggs CJK. Theory of biological control: recent developments. Ecology. 1996; 77: 2001–2013.

72. Jaworski CC, Bompard A, Genies L, Amiens-Desneux E, Desneux N. Preference and prey switching in a generalist predator attacking local and invasive alien pests. PloSOne. 2013; 8(12): p.e82231.

73. Jaworski CC, Chailleux A, Bearez P, Desneux N. Apparent competition between major pests reduces pest population densities on tomato crop, but not yield loss. J Pest Sci. 2015; 88: 793–803.

74. Ray C, Hastings A. Density dependence: are we searching at the wrong spatial scale? J Anim Ecol. 1996; 65:556–566.

75. van Baalen M, Krivan V, van Rijn PCJ, Sabelis MW. Alternative food, switching predators, and the persistence of predator-prey systems. Am Nat. 2001; 157: 512–524. doi: 10.1086/319933 18707259

76. Mazzi D, Dorn S. Movement of insect pests in agricultural landscapes. Ann Appl Biol. 2012; 160: 97–113.

Článek vyšel v časopise


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…

Kurzy Doporučená témata