#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Protective effect of lactobacillus plantarum on alcoholic liver injury and regulating of keap-Nrf2-ARE signaling pathway in zebrafish larvae


Autoři: Yaping Liu aff001;  Xiaoqian Liu aff003;  Ying Wang aff001;  Cao Yi aff001;  Jiahui Tian aff001;  Kechun Liu aff001;  Jie Chu aff001
Působiště autorů: Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China aff001;  School of Medical Instrument and Food Engineering, University of Shanhai for Science and Technology, Shanghai, China aff002;  Department of General Practice of Shandong Provincial Qianfoshan Hospital, Ji’nan, Shandong, China aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222339

Souhrn

This research investigated the protective effect of lactobacillus plantarum against alcohol-induced liver injury and the regulatory mechanism of Keap-Nrf2-ARE signal pathway in zebrafish. Firstly, a zebrafish alcoholic liver injury model was established using1.0mM of ethanol concentration, then two forms of lactobacillus plantarum treatment were designed to perform repair, including a lactobacillus plantarum thallus suspension (LPS) and a lactobacillus plantarum thallus breaking solution (LPBS). After 24h of alcohol injury, lactobacillus plantarum concentrations of 0, 1.0×105, 1.0×106, 1.0×107 and 1.5×107 cfu/mL were added to protect zebrafish larvae. Then with the treatment of lactobacillus plantarum after 48h, activities of alanine transaminase (ALT), aspartate transaminase (AST), superoxide dismutase (SOD) and malondialdehyde (MDA) in zebrafish tissue homogenate were respectively determined. Keap-Nrf2-ARE signal pathway related gene expression conditions were also analyzed, including nuclear factor (erythroid-derived 2)-like 2(Nrf2), Kelch like ECH associated protein 1(Keap1), catalase(CAT), hemooxygenase1(HO1) and Glutathione S-Transferase Kappa 1(gstk1). Results showed that: in comparison with the control group, the LPBS with dosage of 1.0×107 cfu/mL remarkably improved the activities of SOD, CAT, HO1and gstk1 in zebrafish larvae liver (P<0.05), resulting in significant increase of the protein expression level of Nrf2 (225.78%) and suppression of Keap1 gene expression (73.67%)(P<0.01). As confirmed by the results, lactobacillus plantarum activated the Keap-Nrf2-ARE signal pathway from the level of transcription, the up-regulation of the expression quantity of Nrf2 protected the organism from oxidative stress and maximally reduced liver injury.

Klíčová slova:

Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Zebrafish – Animal models – Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Fish – Osteichthyes – Bacteria – Gut bacteria – Lactobacillus – Developmental biology – Life cycles – Larvae – Embryology – Embryos – Cell biology – Oxidative stress – Psychology – Addiction – Addicts – Alcoholics – Physical sciences – Chemistry – Chemical compounds – Organic compounds – Alcohols – Ethanol – Organic chemistry – Social sciences


Zdroje

1. Golden BR. Health benefits of probiotic. British Journal of Nutrition. 80:203–207 (1998).

2. Janczarek M, Bachanek T, Mazur E, Chalas R. The role of probiotics in prevention of oral diseases. Postepy Hig Med Dosw(Online). 70:850–857 (2016).

3. Feng LL, Zhang D, Xun YP, Wang SJ, Zhu H. Research progress on functionality and industial application of Lactobacillus plantarum. China Dairy Industry. 46(3):35–37 (2018).

4. Dimidi E, Christodoulides S, Fragkos K, Mark S, Whelan K. The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition. 100(4):1075–1084 (2014). doi: 10.3945/ajcn.114.089151 25099542

5. Sivan A, Corrales L, Hubert N, Williams Jason B, Aquino-Michaels K, Earley Zachary M, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350(6264):1084–1089 (2015). doi: 10.1126/science.aac4255 26541606

6. Jiang YJ, Li BK, Li KX, Lu SL, Wang QL, Jiang CH, et al. Study on antioxidant capacity of Lacobacillus from traditional dairy food in Xinjiang. Food and Fermentation Industries. 41(1):55–59 (2015).

7. Xiao M, Yu Q, Li SJ, Jin MK, Yan C, Juan W, et al. Effects of Lactobacillus plantarum SCS2 on blood glucose level in hyperglycemia mice mode. Applied Biological Chemistry. 59(1):143–150 (2016).

8. Aly SM, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Fathi Mohanmed M. Studies on Bacilus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & Shellfish Immunology. 25(1–2):128–136 (2008).

9. Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, et al. Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Research in Veterinary Science. 91(3):e92–e97 (2011). doi: 10.1016/j.rvsc.2011.02.014 21536310

10. Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology. 148(1):6–30 (2015).

11. Komatsuzaki N, Shima J. Effects of live Lactobacillus paracasei on plasma lipid concentration in rats fed an ethanol-cintaining diet. Biosci Biotechnol Biochem. 76(2):7–232 (2012).

12. Tian FW, Chi FF, Wang G, Liu XM, Zhang QX, Chen YQ, et al. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding. Journal of Microbiology. 53(12):856–863 (2015).

13. Buske C, Gerlai R. Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish. Neurotoxicol Teratol, 33(6): 698–707 (2011). doi: 10.1016/j.ntt.2011.05.009 21658445

14. Mathur P, Guo S. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish. Behav Brain Res, 219(2): 234–239 (2011). doi: 10.1016/j.bbr.2011.01.019 21255611

15. Parker Matthew O, Annan Leonette V, Kanellopoulos Alexandros H, Brock Alistair J, Combe Fraser J, Baiamonte Matteo, et al. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development. Proq Neuropsychopharmacol Bio Psychiatry, 55: 94–100 (2014).

16. Pittman JT, Lott CS. Startle response memory and hippocampal changes in adult zebrafish pharmacologically-induced to exhibit anxiety/depression-like behaviors. Physiol Behav, 123(2): 174–179 (2014).

17. Dunn W, Shah V. Pathogenesis of Alcoholic Liver Disease. Chinic in Liver Disease. 20(3):445–456 (2016).

18. Chang B, Sang LX, Wang Y, Tong J, Zhang D, Wang BY. The protective effect of VSL 3 on intestinal permeability in a rat model of alcoholic intestinal injury. Bmc Gastroenterol. 13(39):6699–6702 (2013).

19. Chi FF, Tian FW, Wang G, Liu XM, Zhang QX, Zhang H, et al. Investigations on the effects of Lactobacillus plantarum 1001 on alcoholic liver injury in mice. China Dairy Industry. 40(9):4–7 (2012).

20. Li D, Liu LT. Introduction to diagnosis and treatment of fish fatty liver disease. Prog in Vet Med. 37(1):114–117 (2016).

21. Xun T, Jun C, Sujuan Z, Ping X. Chemical proteomic analysis of the potential toxicological mechanisms of microcystin-RR in zebrafish (Danio rerio) liver. Environmental toxicology. 1206–1216 (2016). doi: 10.1002/tox.22128 25854999

22. Verstraelen S, Peers B, Maho W, Hollanders K, Remy S, Berckmans P, et al. Phenotypic and biomarker evaluation of zebrafish larvae as an alternative model to predict mammalian hepatotoxicity. Journal of Applied Toxicology Jat. 36(9): 1194–1206 (2016). doi: 10.1002/jat.3288 26946349

23. He JH, Guo SY, Zhu F, Zhu JJ, Chen YX, Huang CJ, et al. A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity. Journal of Pharmacological and Toxicological Methods. 67(1):25–32 (2013). doi: 10.1016/j.vascn.2012.10.003 23128142

24. Westerfield M. The Zebrafish Book. Eugene:University of Oregon Press. 16–21 (1995).

25. Zhang W, Liu Z, Wang AR, Ji H, Zhou ZG. The Comparison of Gut Adhesive Lactobacillus Plantarum Metabolism in Tilapia and Zebrafish Juvenile Fish. Journal of Agricultural Science and Technology. 18(6):153–157 (2016).

26. Jin D, Yu SF, Li BL, Lu JJ, Zhan M, Zhao L, et al. Study on antioxidant capabilities and antibiotic resistance of Lactobacillus plantarum. Science and Technology of Food Industry. 38(24):104–108 (2017).

27. Kim H, Kim HR, Kim NR, Jeong BJ, Lee JS, Jang S, et al. Oral Administration of Lactobacillus Plantarum Lysates Attenuates the Development of Atopic Dermatitis Lesions in Mouse Models. Journal of Microbiology. 53(1):47–52 (2015).

28. Chen HJ, Lin J, Li Q, Guo N. Influence of Resveratrol supplement on behavior of zebrafish larvae to acute ethanol exposure. China Modern Medicine. 23(23):15–18 (2016).

29. Pavόn FJ, Marco EM, Vázquez M, Sánchez L, Rivera P, Gavito A, et al. Effects of adolescent intermittent alcohol exposure on the expression of endocannabinoid signaling-related proteins in the spleen of young adult rats. Plos One. 11(9):e0163752 (2016). doi: 10.1371/journal.pone.0163752 27662369

30. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol. 12(4):231–242 (2015). doi: 10.1038/nrgastro.2015.35 25782093

31. Solhi H, Malekirad A, Kazemifar AM, Sharifi F. Oxidative stress and lipid peroxidation in prolonged users of methamphetamine. Drug Metab Lett.7(2): 79–82 (2014). 24856264

32. Choi JE, Kim S, Ahn JH, Youn Pilju, Kang Jin Seok, Park Kwangsik, et al. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. 100(2): 151–9 (2010).

33. Krohne TU, Kaemmerer E, Holz FG, Kopitz J. Lipid peroxidation products reduce lysosomal protease activities in human retinal pigment epithelial cells via two different mechanisms of action. Experimental Eye Research. 90(2): 261–266 (2010). doi: 10.1016/j.exer.2009.10.014 19895809

34. Okokon J. E., Bawo M. B., Mbagwu Herbert Orji. Hepatoprotective activity of Mammea africana ethanol stem bark extract. Avicenna J Phytomed. 6:248–259 (2016). 27222838

35. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar Mitra, Asghari-Jafarabadi M, Mofid Vahid. Probiotic yogurt improves antioxidant status in type2 diabetic patients. Nutrution. 28(5): 539–543 (2012).

36. Zhang Y, Du R, Wang LF, Zhang HP. The antioxidative effects of probiotic Lactobacillus casei Zhang on the hyperlipidemic rats. European Food research and Technology. 231(1): 151–158 (2010).

37. Guo Y, Yu SW, Zhang CY, Kong Ah-Ng Tony. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radical Bio Med. 88(PtB): 337–349 (2015).

38. Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2 an update. Free Radical Biology & Medicine. 66(1):36–44 (2014).

39. de Haan JB. Nrf2 Activators as attractive therapeutics for diabetic nephropathy. Diabetes. 60(11): 2683–2684 (2011). doi: 10.2337/db11-1072 22025774

40. McMahon M, Lamont DJ, Beattie KA, Hayes John D. Keap1 Perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci USA. 107(44): 18838–18843 (2010). doi: 10.1073/pnas.1007387107 20956331

41. Jiang Q Dai AG. The pathway of PI3k/Akt- aPKCiota/zeta-Nrf2 Regulating the expression of gamma-glutamylcysteine synthetase in the bronchial epithelial cells of rats. Chin J Appl Physiol, 27(1):115–119 (2011).

42. Lu Y, Gong P, Cederbaum AL. Pyrazole induced oxidative liver injury independent of CYP2E1/2A5 induction due to Nrf2 deficiency. Toxicology,252(1–3): 9–16 (2008). doi: 10.1016/j.tox.2008.07.058 18721845

43. Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol, 591(1–3): 66–72(2008). doi: 10.1016/j.ejphar.2008.06.067 18616940

44. Kazim S, Cemal O, Hasan Y, Mehnet T, Nurhan S. Lycopene improves activation of antioxidant system andNrf2/HO-1 pathway of muscle in rainbow trout (Oncorhynchus mykiss) with different stocking densities. Aquaculture. 430:133–138 (2014).

45. Regoli F, Giuliani ME. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Marine Environmental Research. 93:106–117 (2014). doi: 10.1016/j.marenvres.2013.07.006 23942183


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#