Predicting spinal profile using 3D non-contact surface scanning: Changes in surface topography as a predictor of internal spinal alignment

Autoři: J. Paige Little aff001;  Lionel Rayward aff001;  Mark J. Pearcy aff001;  Maree T. Izatt aff001;  Daniel Green aff002;  Robert D. Labrom aff001;  Geoffrey N. Askin aff001
Působiště autorů: Biomechanics and Spine Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia aff001;  Sealy of Australia, Wacol, Australia aff002;  Wesley Hospital, Brisbane, Australia aff003;  Mater Health Services, Brisbane, Australia aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222453



3D non-contact surface scanners capture highly accurate, calibrated images of surface topography for 3D structures. This study sought to establish the efficacy and accuracy of using 3D surface scanning to characterise spinal curvature and sagittal plane contour.


10 healthy female adults with a mean age of 25 years, (standard deviation: 3.6 years) underwent both MRI and 3D surface scanning (3DSS) (Artec Eva, Artec Group Inc., Luxembourg) while lying in the lateral decubitus position on a rigid substrate. Prior to 3DSS, anatomical landmarks on the spinous processes of each participant were demarcated using stickers attached to the skin surface. Following 3DSS, oil capsules (fiducial markers) were overlaid on the stickers and the subject underwent MRI. MRI stacks were processed to measure the thoracolumbar spinous process locations, providing an anatomical reference. 3D coordinates for the markers (surface stickers and MRI oil capsules) and for the spinous processes mapped the spinal column profiles and were compared to assess the quality of fit between the 3DSS and MRI marker positions.


The RMSE for the polynomials fit to the spinous process, fiducial and surface marker profiles ranged from 0.17–1.15mm for all subjects. The MRI fiducial marker location was well aligned with the spinous process profile in the thoracic and upper lumbar spine for nine of the subjects. Over the 10 subjects, the mean RMSE between the MRI and 3D scan sagittal profiles for all surface markers was 9.8mm (SD 4.2mm). Curvature was well matched for seven of the subjects, with two showing differing curvatures across the lumbar spine due to inconsistent subject positioning.


Comparison of the observed trends for vertebral position measured from MRI and 3DSS, suggested the surface markers may provide a useful method for measuring internal changes in sagittal curvature or skeletal changes.

Klíčová slova:

Hip – Magnetic resonance imaging – Oils – Polynomials – Shoulders – Spine – Kyphosis


1. Ebrahim M., 3D Laser Scanners: History, applications and future, in Civil Engineering Department,. 2014, Assiut University.

2. Bolliger S.A., et al., Virtual autopsy using imaging: bridging radiologic and forensic sciences. A review of the Virtopsy and similar projects. Eur Radiol, 2008. 18(2): p. 273–82. doi: 10.1007/s00330-007-0737-4 17705044

3. Niven L., et al., Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection. Journal of Archaeological Science, 2009. 36(9): p. 2018–2023.

4. Clin J., et al., Biomechanical modeling of brace treatment of scoliosis: effects of gravitational loads. Med Biol Eng Comput, 2011. 49(7): p. 743–53. doi: 10.1007/s11517-011-0737-z 21287287

5. Lain A., et al., New Methods for Imaging Evaluation of Chest Wall Deformities. Front Pediatr, 2017. 5: p. 257. doi: 10.3389/fped.2017.00257 29255700

6. Barczyk-Pawelec K., Bankosz Z., and Derlich M., Body postures and asymmetries in frontal and tranverse planes in the trunk area in table tennis players. Biology of Sport, 2012. 29: p. 129–134.

7. Goldberg C.J., et al., Surface topography, Cobb angles, and cosmetic change in scoliosis. Spine (Phila Pa 1976), 2001. 26(4): p. E55–63.

8. Kotwicki T., et al., Discrepancy in clinical versus radiological parameters describing deformity due to brace treatment for moderate idiopathic scoliosis. Scoliosis, 2007. 2: p. 18. doi: 10.1186/1748-7161-2-18 18053172

9. Frobin W. and Hierholzer E., Rasterstereography—a Photogrammetric Method for Measurement of Body Surfaces. Photogrammetric Engineering and Remote Sensing, 1981. 47(12): p. 1717–1724.

10. Gorton G.E., Young M.L., and Masso P.D., Accuracy, Reliability, and Validity of a 3-Dimensional Scanner for Assessing Torso Shape in Idiopathic Scoliosis. Spine, 2012. 37(11): p. 957–965. doi: 10.1097/BRS.0b013e31823a012e 22020589

11. Knott P., et al., Measuring anterior trunk deformity in scoliosis: development of asymmetry parameters using surface topography (a pilot study). Scoliosis and Spinal Disorders, 2016. 11.

12. Ng K., Lou E., and Duke K., Evaluation of accuracy, precision and optimal parameters of a 3D scanner in acquiring body contour of patients with AIS. Scoliosis and Spinal Disorders, 2018. 13 (Suppl 1)(8): p. 28.

13. Patias P., et al., A review of the trunk surface metrics used as Scoliosis and other deformities evaluation indices. Scoliosis, 2010. 5: p. 12. doi: 10.1186/1748-7161-5-12 20584340

14. Grant C.A., et al., Accuracy of 3D surface scanners for clinical torso and spinal deformity assessment. Med Eng Phys, 2019. 63: p. 63–71. doi: 10.1016/j.medengphy.2018.11.004 30467027

15. Haex B., Back and Bed: Ergonomic aspects of sleeping. 2005, New York: CRC Press.

16. Izatt M., et al., Determining and reliably visible and inexpensive surface fiducial marker for use in MRI: a research study in a busy Australian Radiology Department. British Medical Journal (open), 2019. In Press.

17. Morl F. and Blickhan R., Three-dimensional relation of skin markers to lumbar vertebrae of healthy subjects in different postures measured by open MRI. Eur Spine J, 2006. 15(6): p. 742–51. doi: 10.1007/s00586-005-0960-0 16047207

18. Schmid S., et al., Using Skin Markers for Spinal Curvature Quantification in Main Thoracic Adolescent Idiopathic Scoliosis: An Explorative Radiographic Study. PLoS One, 2015. 10(8): p. e0135689. doi: 10.1371/journal.pone.0135689 26270557

19. Petit Y., Aubin C.E., and Labelle H., Three-dimensional imaging for the surgical treatment of idiopathic scoliosis in adolescents. Can J Surg, 2002. 45(6): p. 453–8. 12500925

20. Catan H., et al., Pedicle morphology of the thoracic spine in preadolescent idiopathic scoliosis: magnetic resonance supported analysis. Eur Spine J, 2007. 16(8): p. 1203–8. doi: 10.1007/s00586-006-0281-y 17203274

21. Liljenqvist U.R., et al., Analysis of vertebral morphology in idiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. J Bone Joint Surg Am, 2002. 84-A(3): p. 359–68.

22. Stern D., et al., Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys Med Biol, 2011. 56(23): p. 7505–22. doi: 10.1088/0031-9155/56/23/011 22080628

23. Ghaneei M., et al., Customised k-nearest neighbourhood analysis in the management of adolescent idiopathic scoliosis using 3D markerless asymmetry analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2019. 22(7): p. 696. doi: 10.1080/10255842.2019.1584795 30849240

Článek vyšel v časopise


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Zvyšte si kvalifikaci online z pohodlí domova

Antiseptika a prevence ve stomatologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Citikolin v neuroprotekci a neuroregeneraci: od výzkumu do klinické praxe nejen očních lékařů
Autoři: MUDr. Petr Výborný, CSc., FEBO

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Diagnostika a léčba deprese pro ambulantní praxi
Autoři: MUDr. Jan Hubeňák, Ph.D

Význam nemocničního alert systému v době SARS-CoV-2
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D., prim. MUDr. Václava Adámková

Všechny kurzy
Kurzy Doporučená témata