Metabolisable energy content in canine and feline foods is best predicted by the NRC2006 equation


Autoři: Juliane Calvez aff001;  Mickael Weber aff001;  Claude Ecochard aff001;  Louise Kleim aff001;  John Flanagan aff001;  Vincent Biourge aff001;  Alexander J. German aff002
Působiště autorů: Royal Canin Research Center, Aimargues, France aff001;  Institute of Ageing and Chronic Disease, University of Liverpool, Neston, Cheshire, United Kingdom aff002;  Institute of Veterinary Science, University of Liverpool, Neston, Cheshire, United Kingdom aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223099

Souhrn

Although animal trials are the most accurate approach to determine the metabolisable energy (ME) content of pet food, these are expensive and labour-intensive. Instead, various equations have been proposed to predict ME content, but no single method is universally recommended. Data from canine and feline feeding studies, conducted according to Association of American Feed Control Officials recommendations, over a 6-year period at a single research site, were utilised to determine the performance of different predictive equations. Predictive equations tested included the modified Atwater (MA equation), NRC 2006 equations using both crude fibre (NRC 2006cf) and total dietary fibre (NRC 2006tdf), and new equations reported in the most recent study assessing ME predictive equations (Hall equations; PLoS ONE 8(1): e54405). Where appropriate, equations were tested using both predicted gross energy (GE) and GE measured by bomb calorimetry. Associations between measured and predicted ME were compared with Deming regression, whilst agreement was assessed with Bland-Altman plots. 335 feeding trials were included, comprising 207 canine (182 dry food; 25 wet food) and 128 feline trials (104 dry food, 24 wet food). Predicted ME was positively associated with measured ME whatever the equation used (P<0.001 for all). Agreement between predicted and actual ME was worst for the MA equation, for all food types, with evidence of both a systematic bias and proportional errors evident for all food types. The NRC 2006cf and Hall equations were intermediate in performance, whilst the NRC 2006tdf equations performed best especially when using measured rather than predicted GE, with the narrowest 95% limits of agreement, minimal bias and proportional error. In conclusion, when predicting ME content of pet food, veterinarians, nutritionists, pet food manufacturers and regulatory bodies are strongly advised to use the NRC 2006tdf equations and using measured rather than predicted GE.

Klíčová slova:

Bioenergetics – Cats – Diet – Dogs – Energy metabolism – Fats – Food – Pets and companion animals


Zdroje

1. Thatcher CD, Hand MS, Remillard RL. Small animal clinical nutrition: an iterative process. In: Hand MS, Thatcher CD, Remillard RL, Roudebush P, Novotny BJ, editors. Small animal clinical nutrition. 5th ed. Topeka KS: Mark Morris Institute; 2010. pp. 3–21.

2. Nutritional Research Council. Nutrient requirements of dogs and cats. Washington, DC: The National Academies Press; 2006.

3. Association of American Feed Control Officials. Official Publication. Oxford, IN: Association of American Feed Control Officials Inc; 2018.

4. Kienzle E. Further developments in the prediction of metabolizable energy (ME) in pet food. J Nutr. 2002;132: 1796S–1798S. doi: 10.1093/jn/132.6.1796S 12042532

5. Atwater WO. Principles of nutrition and nutritive value of food. USDA Farmers’ Bull. 1902;142: 1–48.

6. Kuhlman G, Laflamme DP, Ballam JM. A simple method for estimating the metabolizable energy content of dry cat foods. Fel Pract. 1993;21: 16–20.

7. Kendall PT, Burger IH, Smith PM. Methods of estimation of the metabolizable energy content of cat foods. Fel Pract. 1985;15: 38–44.

8. Kendall PT, Holme DW, Smith PM. Methods of prediction of the digestible energy content of dog foods from gross energy value, proximate analysis and digestive nutrient content. J Sci Food Agric. 1982;33: 823–831.

9. National Research Council. Nutrient requirements of dogs and cats. Washington, DC: The National Academies Press; 1985.

10. Kienzle E, Opitz B, Earl KE, Smith PM, Maskell IE, Iben C. The development of an improved method of predicting the energy content in prepared dog and cat food. J Anim Physiol Anim Nutr. 1998;79: 69–79.

11. Laflamme DP. Determining metabolizable energy content in commercial pet foods. J Anim Physiol Anim Nutr (Berl). 2001;85: 222–230.

12. Yamka RM, Mcleod KR, Harmon DL, Freetly HC, Schoenherr WD. The impact of dietary protein source on observed and predicted metabolizable energy of dry extruded dog foods. J Anim Sci. 2007;85: 204–212. doi: 10.2527/jas.2005-336 17179557

13. Castrillo C, Hervera M, Baucells MD. Methods for predicting the energy value of pet foods. R Bras Zootec. 2009;38S: 1–14.

14. Kienzle E, Biourge V, Schönmeier A. Prediction of energy digestibility in complete dry foods for dogs and cats by total dietary fiber. J Nutr. 2006;136: 2041S–2044S. doi: 10.1093/jn/136.7.2041S 16772491

15. European Pet Food Federation (FEDIAF). Nutritional requirements. [Cited 24 April 2019]. Available from: http://www.fediaf.org//prepared-pet-foods/nutritional-requirements.html

16. Hall JA, Melendez LD, Jewell DE. Using gross energy improves metabolizable energy Predictive equations for pet foods whereas undigested protein and fiber content predict stool quality. PLoS ONE. 2013;8(1): e54405. doi: 10.1371/journal.pone.0054405 23342151

17. Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15: 361–387. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 8668867

18. Giancrisotofaro RA, Salmaso L. Model performance analysis and model validation in logistic regression. Statistica. 2003;63: 375–396.

19. Clinical and Laboratory Standards Institute. Measurement procedure comparison and bias estimation using patient samples; approved guidelines; CLSI document EP09-A3. 3rd ed. Wayne: Clinical Laboratory Standards Institute; 2013.

20. Martin RF. General Deming regression for estimating systematic bias and its confidence interval in method-comparison studies. Clin Chem. 2000;46: 100–104. 10620577

21. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327: 307–310. doi: 10.1016/S0140-6736(86)90837-8

22. Jensen AL, Kielgaard-Hansen M. Method comparison in the clinical laboratory. Vet Clin Pathol. 2006;35: 276–286. 16967409

23. Naumann C, Bassler R, Seibold R, Cath C. Methodenbuch Band III, Die Chemische Untersuchung von Futtermitteln. Damstadt: VDLUFA-Verlag; 1997; Neudamm: Verlag J. Naumann.

24. Prosky L, Asp NG, Furda I, DeVries JW, Schweizer TF, Harland BF. Determination of total dietary fiber in foods and food products: collaborative study. J Assoc Off Anal Chem. 1985;68: 677–679. 2993226

25. Bermingham EN, Thomas DG, Morris PJ, Hawthorne AJ. Energy requirements of adult cats. Br J Nutr. 2010;103: 1083–1090. doi: 10.1017/S000711450999290X 20100376

26. Bermingham EN, Thomas DG, Cave NJ, Morris PJ, Butterwick RF, German AJ. Energy requirements of adult dogs: a meta-analysis. PLoS ONE. 2014;9(10): e109681. doi: 10.1371/journal.pone.0109681 25313818

27. German AJ, Holden SL, Mason SL, Bryner C, Bouldoires C, Morris PJ, et al. Imprecision when using measuring cups to weigh out extruded dry kibbled food. J Anim Animal Physiol Anim Nutr. 2011;95: 368–373. doi: 10.1111/j.1439-0396.2010.01063.x 21039926

28. German AJ, Holden SL, Bissot T, Hackett RM, Biourge V. Dietary energy restriction and successful weight loss in obese client-owned dogs. J Vet Int Med. 2007;21: 1174–1180. doi: 10.1111/j.1939-1676.2007.tb01934.x


Článek vyšel v časopise

PLOS One


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
nový kurz
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Léčba bolesti v ordinaci praktického lékaře
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se