MET as resistance factor for afatinib therapy and motility driver in gastric cancer cells

Autoři: Karolin Ebert aff001;  Julian Mattes aff002;  Thomas Kunzke aff001;  Gwen Zwingenberger aff001;  Birgit Luber aff001
Působiště autorů: Technische Universität München, Fakultät für Medizin, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, Trogerstr, München, Germany aff001;  MATTES Medical Imaging GmbH, Softwarepark, Hagenberg, Austria aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223225


The therapeutic options for advanced gastric cancer are still limited. Several drugs targeting the epidermal growth factor receptor family have been developed. So far, the HER2 antibody trastuzumab is the only drug targeting the HER-family that is available to gastric cancer patients. The pan-HER inhibitor afatinib is currently investigated in clinical trials and shows promising results in cell culture experiments and patient-derived xenograft (PDX) models. However, some cell lines do not respond to afatinib treatment. The determination of resistance factors in these cell lines can help to find the best treatment option for gastric cancer patients. In this study, we analyzed the role of MET as a resistance factor for afatinib therapy in a gastric cancer cell line. MET expression in afatinib-resistant MET-amplified Hs746T cells was reduced by means of siRNA transfection. The effects of MET knockdown on signal transduction, cell proliferation and motility were examined. In addition to the manual assessment of cell motility, a computational motility analysis involving parameters such as (approximate) average speed, displacement entropy or radial effectiveness was realized. Moreover, the impact of afatinib was compared between MET knockdown cells and control cells. MET knockdown in Hs746T cells resulted in impaired signal transduction and reduced cell proliferation and motility. Moreover, the afatinib resistance of Hs746T cells was reversed after MET knockdown. Therefore, the amplification of MET is confirmed as a resistance factor in gastric cancer cells. Whether MET is a useful resistance marker for afatinib therapy or other HER-targeting drugs in patients should be investigated in clinical trials.

Klíčová slova:

Cancer treatment – Cell motility – Cell proliferation – Entropy – Gastric cancer – Small interfering RNAs – Transfection – Tyrosine kinase inhibitors


1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018. doi: 10.3322/caac.21492 30207593.

2. Lordick F, Janjigian YY. Clinical impact of tumour biology in the management of gastroesophageal cancer. Nat Rev Clin Oncol. 2016;13(6):348–60. doi: 10.1038/nrclinonc.2016.15 26925958; PubMed Central PMCID: PMC5521012.

3. Lordick F, Shitara K, Janjigian YY. New agents on the horizon in gastric cancer. Ann Oncol. 2017;28(8):1767–75. doi: 10.1093/annonc/mdx051 28184417.

4. Apicella M, Corso S, Giordano S. Targeted therapies for gastric cancer: failures and hopes from clinical trials. Oncotarget. 2017. doi: 10.18632/oncotarget.14825 28148892.

5. Keller S, Zwingenberger G, Ebert K, Hasenauer J, Wasmuth J, Maier D, et al. Effects of trastuzumab and afatinib on kinase activity in gastric cancer cell lines. Mol Oncol. 2018;12(4):441–62. doi: 10.1002/1878-0261.12170 29325228; PubMed Central PMCID: PMC5891041.

6. Janjigian YY, Viola-Villegas N, Holland JP, Divilov V, Carlin SD, Gomes-DaGama EM, et al. Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET. J Nucl Med. 2013;54(6):936–43. doi: 10.2967/jnumed.112.110239 23578997; PubMed Central PMCID: PMC4967936.

7. Yoshioka T, Shien K, Namba K, Torigoe H, Sato H, Tomida S, et al. Antitumor activity of pan-HER inhibitors in HER2-positive gastric cancer. Cancer Sci. 2018;109(4):1166–76. doi: 10.1111/cas.13546 29465762; PubMed Central PMCID: PMC5891184.

8. Chen Z, Huang W, Tian T, Zang W, Wang J, Liu Z, et al. Characterization and validation of potential therapeutic targets based on the molecular signature of patient-derived xenografts in gastric cancer. J Hematol Oncol. 2018;11(1):20. doi: 10.1186/s13045-018-0563-y 29433585; PubMed Central PMCID: PMC5809945.

9. Corso S, Migliore C, Ghiso E, De Rosa G, Comoglio PM, Giordano S. Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene. 2008;27(5):684–93. doi: 10.1038/sj.onc.1210697 17684486.

10. Anestis A, Zoi I, Karamouzis MV. Current advances of targeting HGF/c-Met pathway in gastric cancer. Ann Transl Med. 2018;6(12):247. doi: 10.21037/atm.2018.04.42 30069449; PubMed Central PMCID: PMC6046293.

11. Kim HS, Chon HJ, Kim H, Shin SJ, Wacheck V, Gruver AM, et al. MET in gastric cancer with liver metastasis: The relationship between MET amplification and Met overexpression in primary stomach tumors and liver metastasis. J Surg Oncol. 2018;117(8):1679–86. doi: 10.1002/jso.25097 29790169.

12. Catenacci DVT, Tebbutt NC, Davidenko I, Murad AM, Al-Batran SE, Ilson DH, et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(11):1467–82. doi: 10.1016/S1470-2045(17)30566-1 28958504; PubMed Central PMCID: PMC5898242.

13. Shah MA, Cho JY, Huat ITB, Tebbutt NC, Yen C-J, Kang A, et al. Randomized phase II study of FOLFOX +/- MET inhibitor, onartuzumab (O), in advanced gastroesophageal adenocarcinoma (GEC). Journal of Clinical Oncology. 2015;33(3_suppl):2–. doi: 10.1200/jco.2015.33.3_suppl.2

14. Strickler JH, LoRusso P, Yen C-J, Lin C-C, Kang Y-K, Kaminker P, et al. Phase 1, open-label, dose-escalation, and expansion study of ABT-700, an anti-C-met antibody, in patients (pts) with advanced solid tumors. Journal of Clinical Oncology. 2014;32(15_suppl):2507–. doi: 10.1200/jco.2014.32.15_suppl.2507

15. Kwak EL, LoRusso P, Hamid O, Janku F, Kittaneh M, Catenacci DVT, et al. Clinical activity of AMG 337, an oral MET kinase inhibitor, in adult patients (pts) with MET-amplified gastroesophageal junction (GEJ), gastric (G), or esophageal (E) cancer. Journal of Clinical Oncology. 2015;33(3_suppl):1–. doi: 10.1200/jco.2015.33.3_suppl.1

16. Heindl S, Eggenstein E, Keller S, Kneissl J, Keller G, Mutze K, et al. Relevance of MET activation and genetic alterations of KRAS and E-cadherin for cetuximab sensitivity of gastric cancer cell lines. J Cancer Res Clin Oncol. 2012;138(5):843–58. doi: 10.1007/s00432-011-1128-4 22290393.

17. Kneissl J, Keller S, Lorber T, Heindl S, Keller G, Drexler I, et al. Association of amphiregulin with the cetuximab sensitivity of gastric cancer cell lines. Int J Oncol. 2012;41(2):733–44. doi: 10.3892/ijo.2012.1479 22614881.

18. Keller S, Kneissl J, Grabher-Meier V, Heindl S, Hasenauer J, Maier D, et al. Evaluation of epidermal growth factor receptor signaling effects in gastric cancer cell lines by detailed motility-focused phenotypic characterization linked with molecular analysis. BMC Cancer. 2017;17(1):845. doi: 10.1186/s12885-017-3822-3 29237412; PubMed Central PMCID: PMC5729506.

19. Fuchs M, Hutzler P, Brunner I, Schlegel J, Mages J, Reuning U, et al. Motility enhancement by tumor-derived mutant E-cadherin is sensitive to treatment with epidermal growth factor receptor and phosphatidylinositol 3-kinase inhibitors. Exp Cell Res. 2002;276(2):129–41. doi: 10.1006/excr.2002.5518 12027444.

20. Debeir O, Van Ham P, Kiss R, Decaestecker C. Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Trans Med Imaging. 2005;24(6):697–711. doi: 10.1109/TMI.2005.846851 15957594.

21. Kazmar T, Smid M, Fuchs M, Luber B, Mattes J. Learning cellular texture features in microscopic cancer cell images for automated cell-detection. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:49–52. doi: 10.1109/IEMBS.2010.5626299 21095879.

22. Costa Lda F, Cintra LC, Schubert D. An integrated approach to the characterization of cell movement. Cytometry A. 2005;68(2):92–100. doi: 10.1002/cyto.a.20191 16237685.

23. Yan SB, Um SL, Peek VL, Stephens JR, Zeng W, Konicek BW, et al. MET-targeting antibody (emibetuzumab) and kinase inhibitor (merestinib) as single agent or in combination in a cancer model bearing MET exon 14 skipping. Invest New Drugs. 2018;36(4):536–44. doi: 10.1007/s10637-017-0545-x 29188469.

24. Asaoka Y, Tada M, Ikenoue T, Seto M, Imai M, Miyabayashi K, et al. Gastric cancer cell line Hs746T harbors a splice site mutation of c-Met causing juxtamembrane domain deletion. Biochem Biophys Res Commun. 2010;394(4):1042–6. doi: 10.1016/j.bbrc.2010.03.120 20331976.

25. Chen G, Noor A, Kronenberger P, Teugels E, Umelo IA, De Greve J. Synergistic effect of afatinib with su11274 in non-small cell lung cancer cells resistant to gefitinib or erlotinib. PLoS One. 2013;8(3):e59708. doi: 10.1371/journal.pone.0059708 23527257; PubMed Central PMCID: PMC3601073.

26. Booth L, Roberts JL, Tavallai M, Webb T, Leon D, Chen J, et al. The afatinib resistance of in vivo generated H1975 lung cancer cell clones is mediated by SRC/ERBB3/c-KIT/c-MET compensatory survival signaling. Oncotarget. 2016;7(15):19620–30. doi: 10.18632/oncotarget.7746 26934000; PubMed Central PMCID: PMC4991406.

27. Li C, Singh B, Graves-Deal R, Ma H, Starchenko A, Fry WH, et al. Three-dimensional culture system identifies a new mode of cetuximab resistance and disease-relevant genes in colorectal cancer. Proc Natl Acad Sci U S A. 2017;114(14):E2852–E61. doi: 10.1073/pnas.1618297114 28320945; PubMed Central PMCID: PMC5389279.

28. Chen CT, Kim H, Liska D, Gao S, Christensen JG, Weiser MR. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol Cancer Ther. 2012;11(3):660–9. doi: 10.1158/1535-7163.MCT-11-0754 22238368; PubMed Central PMCID: PMC4209288.

29. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):D955–61. doi: 10.1093/nar/gks1111 23180760; PubMed Central PMCID: PMC3531057.

30. Sanchez-Vega F, Hechtman JF, Castel P, Ku GY, Tuvy Y, Won H, et al. EGFR and MET Amplifications Determine Response to HER2 Inhibition in ERBB2-Amplified Esophagogastric Cancer. Cancer Discov. 2019;9(2):199–209. doi: 10.1158/2159-8290.CD-18-0598 30463996; PubMed Central PMCID: PMC6368868.

31. Weinstein IB, Joe AK. Mechanisms of disease: Oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3(8):448–57. doi: 10.1038/ncponc0558 16894390.

32. Lutterbach B, Zeng Q, Davis LJ, Hatch H, Hang G, Kohl NE, et al. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res. 2007;67(5):2081–8. doi: 10.1158/0008-5472.CAN-06-3495 17332337.

33. Park CH, Cho SY, Ha JD, Jung H, Kim HR, Lee CO, et al. Novel c-Met inhibitor suppresses the growth of c-Met-addicted gastric cancer cells. BMC Cancer. 2016;16:35. doi: 10.1186/s12885-016-2058-y 26801760; PubMed Central PMCID: PMC4722623.

34. Lai AZ, Cory S, Zhao H, Gigoux M, Monast A, Guiot MC, et al. Dynamic reprogramming of signaling upon met inhibition reveals a mechanism of drug resistance in gastric cancer. Sci Signal. 2014;7(322):ra38. doi: 10.1126/scisignal.2004839 24757178.

35. Kim HJ, Kang SK, Kwon WS, Kim TS, Jeong I, Jeung HC, et al. Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor. Int J Cancer. 2018;143(1):151–9. doi: 10.1002/ijc.31304 29435981.

36. Smolen GA, Sordella R, Muir B, Mohapatra G, Barmettler A, Archibald H, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A. 2006;103(7):2316–21. doi: 10.1073/pnas.0508776103 16461907; PubMed Central PMCID: PMC1413705.

37. Van Der Steen N, Giovannetti E, Pauwels P, Peters GJ, Hong DS, Cappuzzo F, et al. cMET Exon 14 Skipping: From the Structure to the Clinic. J Thorac Oncol. 2016;11(9):1423–32. doi: 10.1016/j.jtho.2016.05.005 27223456.

38. Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9. doi: 10.1158/2159-8290.CD-14-1467 25971939; PubMed Central PMCID: PMC4658654.

39. Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci. 2013;34(5):283–9. doi: 10.1016/ 23571046; PubMed Central PMCID: PMC3640670.

40. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25. doi: 10.1038/nrm1261 14685170.

41. Giordano S, Columbano A. Met as a therapeutic target in HCC: facts and hopes. Journal of hepatology. 2014;60(2):442–52. Epub 2013/09/21. doi: 10.1016/j.jhep.2013.09.009 24045150.

42. Fuse N, Kuboki Y, Kuwata T, Nishina T, Kadowaki S, Shinozaki E, et al. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer. 2016;19(1):183–91. doi: 10.1007/s10120-015-0471-6 25682441.

43. Huang L, Cai M, Zhang X, Wang F, Chen L, Xu M, et al. Combinational therapy of crizotinib and afatinib for malignant pleural mesothelioma. Am J Cancer Res. 2017;7(2):203–17. 28337371; PubMed Central PMCID: PMC5336496.

44. Torigoe H, Shien K, Takeda T, Yoshioka T, Namba K, Sato H, et al. Therapeutic strategies for afatinib-resistant lung cancer harboring HER2 alterations. Cancer Sci. 2018;109(5):1493–502. doi: 10.1111/cas.13571 29532558; PubMed Central PMCID: PMC5980184.

Článek vyšel v časopise


2019 Číslo 9